当前位置: X-MOL 学术Chem. Eng. Process. Process Intensif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi objective optimization of vortex generators for heat transfer enhancement using large design space exploration
Chemical Engineering and Processing: Process Intensification ( IF 3.8 ) Pub Date : 2020-06-27 , DOI: 10.1016/j.cep.2020.107982
H. Karkaba , T. Dbouk , C. Habchi , S. Russeil , T. Lemenand , D. Bougeard

In many applications, convective heat transfer enhancement is readily achieved by generating streamwise vortices and coherent flow structures using Vortex Generators (VG's) such as in multifunctional heat exchangers/reactors. Shape optimization of the VG's have been carried out over the last decades to find enhanced designs. Meanwhile, the design variables were limited to two or three such as angle of attack, roll angle and shape factor. In the present study, optimization using a large space exploration design via multiobjective function are conducted to find optimal VG designs. Simulations are performed over the VG shape in a rectangular parallel plate channels under forced convection laminar flow regime. Firstly the numerical results are validated versus experimental and numerical data from the open literature. Then, seven design parameters are considered with different incremental values which are: Attack Angle (α), Roll Angle (β), Base Angles (γ1 and γ2), Height (h), Length (l), and Shape Length (SL). Based on the new optimization study, a novel enhanced VG is found with thermal enhancement factor 35% relative to an empty channel and 14% better than literature results. Local analysis of the flow structure and heat transfer processes are conducted for the new optimized VG and for other classical VG shapes.



中文翻译:

使用大型设计空间探索的涡流发生器多目标优化,以增强传热

在许多应用中,通过使用涡旋发生器(VG)(例如在多功能换热器/反应器中)产生沿流的涡流和相干的流动结构,可以轻松实现对流传热的增强。在过去的几十年中,已经对VG的形状进行了优化,以找到增强的设计。同时,设计变量被限制为两个或三个,例如攻角,侧倾角和形状因子。在本研究中,使用大空间探索设计通过多目标函数进行了优化,以找到最佳的VG设计。在强制对流层流状态下,在矩形平行板通道中的VG形状上进行了模拟。首先,将数值结果与来自公开文献的实验和数值数据进行验证。然后,α),横滚角(β)中,底角(γ 1γ 2),高度(H ^),长度(),和形状长度(SL)。根据新的优化研究,发现了一种新型的增强型VG,其热增强因子相对于空通道为35%,比文献结果好14%。对新优化的VG和其他经典VG形状进行了流动结构和传热过程的局部分析。

更新日期:2020-06-27
down
wechat
bug