当前位置: X-MOL 学术Vis. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Underwater image compression using energy based adaptive block compressive sensing for IoUT applications
The Visual Computer ( IF 3.5 ) Pub Date : 2020-06-27 , DOI: 10.1007/s00371-020-01884-8
R. Monika , Dhanalakshmi Samiappan , R. Kumar

Internet of Underwater Things (IoUT) consists of a large number of interconnected resource-constrained underwater devices that are capable of monitoring vast unexplored water bodies. Specifically, these devices are equipped with cameras to capture the underwater scenes and communicate them with each other and also with the cloud. However the data generated is very high which limits the performance of the IoUT devices in terms of computational capabilities and battery lifetime. Block Compressed Sensing technique which performs block by block fixed sampling can be utilized to achieve data compression however it ends up in image distortions after reconstruction. To unravel this issue, Adaptive Block Compressive Sensing technique is used. In this paper, Energy based Adaptive Block Compressive Sensing (EABCS) with Orthogonal Matching Pursuit reconstruction algorithm is proposed to improve the sampling performance and visual quality of the reconstructed image. Sparse binary random matrix is used as measurement matrix as it is highly sparse. With this energy based adaptive strategy, higher measurements are assigned to blocks with higher energy and vice versa. The proposed EABCS technique has achieved better compression with approximately 25–30% of measurements/samples with an increase in Peak signal to noise ratio of about 3–5 dB and structural similarity Index of around 0.1–0.3 with respect to other adaptive strategies. Percentage of space saving is also about 60–70%.

中文翻译:

使用基于能量的自适应块压缩感知的水下图像压缩,用于 IoUT 应用

水下物联网 (IoOUT) 由大量相互连接的资源受限的水下设备组成,这些设备能够监测巨大的未开发水体。具体来说,这些设备配备了摄像头来捕捉水下场景,并与彼此以及与云进行通信。然而,生成的数据非常高,这限制了 IoUT 设备在计算能力和电池寿命方面的性能。块压缩传感技术可以利用逐块固定采样来实现数据压缩,但最终会导致重建后的图像失真。为了解决这个问题,使用了自适应块压缩感知技术。在本文中,提出了基于能量的自适应块压缩感知(EABCS)和正交匹配追踪重建算法,以提高重建图像的采样性能和视觉质量。稀疏二进制随机矩阵被用作测量矩阵,因为它是高度稀疏的。使用这种基于能量的自适应策略,更高的测量值被分配给具有更高能量的块,反之亦然。与其他自适应策略相比,所提出的 EABCS 技术实现了更好的压缩,大约 25-30% 的测量/样本,峰值信噪比增加了约 3-5 dB,结构相似性指数约为 0.1-0.3。节省空间的百分比也约为 60-70%。稀疏二进制随机矩阵被用作测量矩阵,因为它是高度稀疏的。使用这种基于能量的自适应策略,更高的测量值被分配给具有更高能量的块,反之亦然。与其他自适应策略相比,所提出的 EABCS 技术实现了更好的压缩,大约 25-30% 的测量/样本,峰值信噪比增加了约 3-5 dB,结构相似性指数约为 0.1-0.3。节省空间的百分比也约为 60-70%。稀疏二进制随机矩阵被用作测量矩阵,因为它是高度稀疏的。使用这种基于能量的自适应策略,更高的测量值被分配给具有更高能量的块,反之亦然。与其他自适应策略相比,所提出的 EABCS 技术实现了更好的压缩,大约 25-30% 的测量/样本,峰值信噪比增加了约 3-5 dB,结构相似性指数约为 0.1-0.3。节省空间的百分比也约为 60-70%。与其他自适应策略相比,所提出的 EABCS 技术实现了更好的压缩,大约 25-30% 的测量/样本,峰值信噪比增加了约 3-5 dB,结构相似性指数约为 0.1-0.3。节省空间的百分比也约为 60-70%。与其他自适应策略相比,所提出的 EABCS 技术实现了更好的压缩,大约 25-30% 的测量/样本,峰值信噪比增加了约 3-5 dB,结构相似性指数约为 0.1-0.3。节省空间的百分比也约为 60-70%。
更新日期:2020-06-27
down
wechat
bug