当前位置: X-MOL 学术J. Exp. Bot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silicon and secondary metabolites integration in plants: A Significant association in stress tolerance.
Journal of Experimental Botany ( IF 5.6 ) Pub Date : 2020-06-26 , DOI: 10.1093/jxb/eraa291
Mohammad Abass Ahanger 1 , Javaid Akhter Bhat 2 , Manzer H Siddiqui 3 , Jörg Rinklebe 4, 5 , Parvaiz Ahmad 3, 6
Affiliation  

As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.

中文翻译:

植物中的硅和次生代谢产物整合:胁迫耐受性的重要关联。

作为无柄生物,植物无法避免遭受对植物的生长和生产力造成负面影响的环境压力。相反,他们利用形态,生理和生化水平的各种机制来减轻这种压力的有害影响。其中,植物产生的次生代谢产物是防御系统的重要组成部分。次级代谢产物,即酚类,萜烯和含氮化合物,已被广泛证明可以保护植物免受多种压力,包括生物(除草剂和病原微生物)和非生物(例如干旱,盐分和重金属)。通过诸如硅(Si)等有益元素调节次级代谢是一个重要的课题。硅介导的生物和非生物胁迫的缓解已在许多植物物种中得到了充分证明。近来,许多研究表明Si参与通过调节次级代谢来增强胁迫耐受性。在这篇综述中,我们讨论了硅介导的对次生代谢产物的合成,代谢和修饰的调节,从而导致增强的胁迫耐受性,重点是生理,生化和分子方面。虽然已经建立了通过次级代谢通过Si介导的病原体抗性调控的机制,但在非生物胁迫的情况下,它们在很大程度上尚不为人所知,因此在我们目前的知识中留下了重要的空白。许多研究表明,Si通过调节次级代谢来增强抗逆性。在这篇综述中,我们讨论了硅介导的次生代谢产物的合成,代谢和修饰的调控,从而导致增强的胁迫耐受性,重点是生理,生化和分子方面。虽然已经建立了通过次级代谢通过Si介导的病原体抗性调控的机制,但在非生物胁迫的情况下,它们在很大程度上尚不为人所知,因此在我们目前的知识中留下了重要的空白。许多研究表明,Si通过调节次级代谢来增强抗逆性。在这篇综述中,我们讨论了硅介导的对次生代谢产物的合成,代谢和修饰的调节,从而导致增强的胁迫耐受性,重点是生理,生化和分子方面。虽然已经建立了通过次级代谢通过Si介导的病原体抗性调控的机制,但在非生物胁迫的情况下,它们在很大程度上是未知的,因此在我们目前的知识上存在重要空白。着重于生理,生化和分子方面。虽然已经建立了通过次级代谢通过Si介导的病原体抗性调控的机制,但在非生物胁迫的情况下,它们在很大程度上尚不为人所知,因此在我们目前的知识中留下了重要的空白。着重于生理,生化和分子方面。虽然已经建立了通过次级代谢通过Si介导的病原体抗性调控的机制,但在非生物胁迫的情况下,它们在很大程度上尚不为人所知,因此在我们目前的知识中留下了重要的空白。
更新日期:2020-06-26
down
wechat
bug