当前位置: X-MOL 学术Polym. Adv. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Poly(hydroxybutyrate)‐based systems behavior on the controlled release of NPK fertilizers
Polymers for Advanced Technologies ( IF 3.1 ) Pub Date : 2020-06-26 , DOI: 10.1002/pat.4985
Tales da Silva Daitx 1 , Vanessa Silva Lima 1 , Marcelo Gryczak 1 , Cesar Liberato Petzhold 1 , Larissa Nardini Carli 2 , Raquel Santos Mauler 1
Affiliation  

Here we investigate the behavior of controlled‐release systems based on poly(hydroxybutyrate) (PHB) to propose an actuation mechanism in a designed environment. Two formulations were produced employing 5% pure NPK fertilizer or 30% of bentonite nanoparticles (Bent) previously modified with NPK. The polymeric composites were obtained by melt processing and their thermal properties evaluated. The release of active compounds was evaluated by conductometric analysis in aqueous solutions at different pHs for 30 days, and the results were modulated by the Korsmeyer‐Peppas model. Also, the systems were evaluated for their biodegradation characteristics using different soil types to generate a decomposition profile. In general, the systems showed a good release control, with 40% and 50% of fertilizer being released in 30 days, depending on the conditions and type of polymeric composite employed. The model indicated a linear release of active compounds in the first 30 days, according to the Fick diffusion. Additionally, the compounds were relatively stable in the first 30 days when exposed to biodegradation, being degraded faster speed after this. The efficiency and applicability of the systems were confirmed by the germination tests, which showed that both systems containing NPK favored plant growth, while the system in which the active agents had been previously incorporated into nanoparticles provided a reduction in the waste of agrochemicals. Thus, a novel mechanism of action for polymeric controlled release systems based on thermoplastic biopolymers was determined, supporting more efficient industrial processes.

中文翻译:

基于聚羟基丁酸酯的系统对NPK肥料控释的行为

在这里,我们研究了基于聚(羟基丁酸)(PHB)的控释系统的行为,以提出在设计环境中的致动机制。使用5%的纯NPK肥料或30%的事先用NPK改性的膨润土纳米颗粒(Bent)生产了两种配方。通过熔融加工获得聚合物复合材料,并评估其热性能。通过在不同pH值的水溶液中进行电导分析30天来评估活性化合物的释放,并通过Korsmeyer-Peppas模型对结果进行调节。同样,使用不同的土壤类型评估系统的生物降解特性,以生成分解曲线。一般而言,系统显示出良好的释放控制能力,在30天内释放了40%和50%的肥料,取决于所用聚合物复合材料的条件和类型。该模型表明,根据Fick扩散,活性化合物在前30天呈线性释放。另外,化合物在暴露于生物降解的前30天相对稳定,此后降解速度更快。该系统的效率和适用性已通过发芽测试得到证实,发芽测试表明这两种含有NPK的系统均有利于植物生长,而先前已将活性剂掺入纳米颗粒中的系统减少了农药的浪费。因此,确定了基于热塑性生物聚合物的聚合物控释系统的新型作用机理,从而支持了更有效的工业过程。该模型表明,根据Fick扩散,活性化合物在前30天呈线性释放。此外,当暴露于生物降解的最初30天,化合物相对稳定,此后降解速度更快。该系统的效率和适用性已通过发芽测试得到证实,发芽测试表明这两种含有NPK的系统均有利于植物生长,而先前已将活性剂掺入纳米颗粒中的系统减少了农药的浪费。因此,确定了基于热塑性生物聚合物的聚合物控释系统的新型作用机理,从而支持了更有效的工业过程。该模型表明,根据Fick扩散,活性化合物在前30天呈线性释放。此外,当暴露于生物降解的最初30天,化合物相对稳定,此后降解速度更快。该系统的效率和适用性已通过发芽测试得到证实,发芽测试表明这两种含有NPK的系统均有利于植物生长,而先前已将活性剂掺入纳米颗粒中的系统减少了农药的浪费。因此,确定了基于热塑性生物聚合物的聚合物控释系统的新型作用机理,从而支持了更有效的工业过程。暴露于生物降解的前30天,化合物相对稳定,此后降解速度更快。该系统的效率和适用性已通过发芽测试得到证实,发芽测试表明这两种含有NPK的系统均有利于植物生长,而先前已将活性剂掺入纳米颗粒中的系统减少了农药的浪费。因此,确定了基于热塑性生物聚合物的聚合物控释系统的新型作用机理,从而支持了更有效的工业过程。暴露于生物降解的前30天,化合物相对稳定,此后降解速度更快。该系统的效率和适用性已通过发芽测试得到证实,发芽测试表明这两种含有NPK的系统均有利于植物生长,而先前已将活性剂掺入纳米颗粒中的系统减少了农药的浪费。因此,确定了基于热塑性生物聚合物的聚合物控释系统的新型作用机理,从而支持了更有效的工业过程。结果表明,两种含有NPK的体系都有利于植物生长,而以前将活性剂掺入纳米颗粒中的体系减少了农药的浪费。因此,确定了基于热塑性生物聚合物的聚合物控释系统的新型作用机理,从而支持了更有效的工业过程。结果表明,两种含有NPK的体系都有利于植物生长,而以前将活性剂掺入纳米颗粒中的体系减少了农药的浪费。因此,确定了基于热塑性生物聚合物的聚合物控释系统的新型作用机理,从而支持了更有效的工业过程。
更新日期:2020-06-26
down
wechat
bug