当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Pt Nanoparticles with Fe and N Codoped Carbon to Boost Oxygen Reduction Catalytic Performance in Acidic Electrolyte
Energy Technology ( IF 3.6 ) Pub Date : 2020-06-26 , DOI: 10.1002/ente.202000393
Nan-Hong Xie 1, 2 , Min Zhang 1 , Bo-Qing Xu 1
Affiliation  

While high cost and lack of long‐term stability of Pt‐based catalysts have been impeding their practical application in oxygen reduction reaction (ORR) in fuel cell technologies, iron and nitrogen codoped carbons (Fe–N–C) are appearing to be stable but unfortunately less‐active catalysts in acidic electrolyte. Herein, an in situ surfactant‐free Pt deposition approach to fabricate Pt nanoparticles (NPs) onto well‐designed Fe–N–C nanostructures for producing highly performing Pt/Fe–N–C catalyst for ORR in acidic electrolyte is reported. Physical and electrochemical characterizations uncovered that electron transfer from Fe–N–C to their supported Pt NPs would weaken the adsorption of O2 on the Pt surface, therefore improving the intrinsic activity of Pt for ORR. On optimizing the Pt loading, the intrinsic and mass‐specific activity data of Pt in Pt/Fe–N–C are maximized at ≈0.93 mA cm−2 and 0.46 A mg−1‐Pt, respectively, much higher than those for commercial Pt/C (0.21 mA cm−2, 0.19 A mg−1‐Pt). The Pt/Fe–N–C catalyst also shows an intriguing long‐term stability during the accelerated durability test. A new avenue for taking the advantages of Pt and non‐noble metal ORR catalysts is pointed for achieving much better ones to accomplish ORR in acidic electrolyte.

中文翻译:

用Fe和N共掺杂碳工程Pt纳米颗粒增强酸性电解质中的氧还原催化性能。

尽管Pt基催化剂的高成本和缺乏长期稳定性已经阻碍了它们在燃料电池技术中的氧还原反应(ORR)中的实际应用,但铁和氮共掺杂碳(Fe–N–C)似乎很稳定但不幸的是,在酸性电解质中催化剂的活性较低。本文报道了一种原位无表面活性剂的Pt沉积方法,该方法将Pt纳米颗粒(NPs)制造到精心设计的Fe–N–C纳米结构上,以生产用于酸性电解质中ORR的高性能Pt / Fe–N–C催化剂。物理和电化学特性揭示,电子从Fe–N–C转移到其负载的Pt NPs会削弱O 2的吸附在Pt表面上,因此提高了Pt对ORR的固有活性。通过优化Pt负载,Pt / Fe–N–C中Pt的固有和质量比活度数据分别在≈0.93mA cm -2和0.46 A mg -1 -Pt时最大化,远高于商业用途。的Pt / C(0.21毫安厘米-2,0.19甲毫克-1 -Pt)。在加速耐久性试验中,Pt / Fe–N–C催化剂还显示出令人着迷的长期稳定性。利用Pt和非贵金属ORR催化剂的优势的新途径旨在获得更好的催化剂来完成酸性电解质中的ORR。
更新日期:2020-06-26
down
wechat
bug