当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of tempering conditions on adiabatic shear banding during dynamic compression and ballistic impact tests of ultra-high-strength armor steel
Materials Science and Engineering: A ( IF 6.1 ) Pub Date : 2020-06-27 , DOI: 10.1016/j.msea.2020.139818
Min Cheol Jo , Selim Kim , Dong Woo Suh , Sung Suk Hong , Hong Kyu Kim , Seok Su Sohn , Sunghak Lee

In this study, roles of strain-hardening rate on susceptibility of adiabatic shear band (ASB) formation and subsequent cracking were investigated in two ultra-high-strength armor steel plates heat-treated differently. The quenched and tempered steel contained ~2% of retained austenite in the tempered martensitic matrix, while the quenched and austempered steel contained ~4% retained austenite in the bainitic matrix partly with the tempered martensite. The actual ballistic impact test results revealed the lower sensitivity of ASB formation in the austempered steel than in the tempered steel, which corresponded well to the higher critical strain for ASB formation in the dynamic compressive test using a laboratory-scale split Hopkinson pressure bar (SHPB). The austempered steel caused the higher internal stress among various constituents, and all the retained austenite transformed into martensite during the deformation, thereby leading to transformation-induced plasticity (TRIP) effect. The higher strain-hardening rate induced by these higher internal stress and TRIP effect increased resistance to ASB formation, which was confirmed by a calculation of ASB susceptibility. Thus, the austempered steel was much less susceptible to the ASB formation during the ultra-high-speed deformation. Consequently, the increased resistance to ASB formation retarded the initiation and propagation of ASBs and cracks.



中文翻译:

回火条件对超高强度铠装钢动态压缩和弹道冲击试验中绝热剪切带的影响

在这项研究中,研究了两种不同热处理方式的超高强度铠装钢板的应变硬化速率对绝热剪切带(ASB)形成敏感性和随后的开裂的作用。淬火回火钢在回火马氏体基体中含有约2%的残余奥氏体,而淬火和回火钢在贝氏体基体中约有4%的残余奥氏体与回火马氏体的一部分。实际的弹道冲击试验结果表明,奥氏体钢中ASB形成的敏感性低于回火钢,这与使用实验室规模的霍普金森压力棒(SHPB)进行的动态压缩试验中ASB形成的较高临界应变很好地对应。 )。奥氏体钢导致各种成分之间较高的内应力,残余奥氏体在变形过程中全部转变为马氏体,从而产生相变可塑性(TRIP)。这些较高的内部应力和TRIP效应引起的较高的应变硬化速率提高了对ASB形成的抵抗力,这一点已通过计算ASB磁化率得到证实。因此,奥氏体钢在超高速变形过程中不易形成ASB。因此,增加的对ASB形成的抵抗力阻止了ASB和裂纹的产生和传播。通过计算ASB敏感性证实了这一点。因此,奥氏体钢在超高速变形过程中不易形成ASB。因此,增加的对ASB形成的抵抗力阻止了ASB和裂纹的产生和传播。通过计算ASB敏感性证实了这一点。因此,奥氏体钢在超高速变形过程中不易形成ASB。因此,增加的对ASB形成的抵抗力阻止了ASB和裂纹的产生和传播。

更新日期:2020-07-01
down
wechat
bug