当前位置: X-MOL 学术Soft Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D aggregation of cells in packed microgel media.
Soft Matter ( IF 2.9 ) Pub Date : 2020-06-26 , DOI: 10.1039/d0sm00517g
Cameron D Morley 1 , Jesse Tordoff 2 , Christopher S O'Bryan 1 , Ron Weiss 3 , Thomas E Angelini 4
Affiliation  

In both natural and applied contexts, investigating cell self-assembly and aggregation within controlled 3D environments leads to improved understanding of how structured cell assemblies emerge, what determines their shapes and sizes, and whether their structural features are stable. However, the inherent limits of using solid scaffolding or liquid spheroid culture for this purpose restrict experimental freedom in studies of cell self-assembly. Here we investigate multi-cellular self-assembly using a 3D culture medium made from packed microgels as a bridge between the extremes of solid scaffolds and liquid culture. We find that cells dispersed at different volume fractions in this microgel-based 3D culture media aggregate into clusters of different sizes and shapes, forming large system-spanning networks at the highest cell densities. We find that the transitions between different states of assembly can be controlled by the level of cell–cell cohesion and by the yield stress of the packed microgel environment. Measurements of aggregate fractal dimension show that those with increased cell–cell cohesion are less sphere-like and more irregularly shaped, indicating that cell stickiness inhibits rearrangements in aggregates, in analogy to the assembly of colloids with strong cohesive bonds. Thus, the effective surface tension often expected to emerge from increased cell cohesion is suppressed in this type of cell self-assembly.

中文翻译:

填充微凝胶介质中细胞的3D聚集。

在自然环境和应用环境中,研究受控3D环境中的单元自组装和聚合都可以更好地理解结构化单元组装的出现方式,确定其形状和大小的因素以及其结构特征是否稳定。但是,为此目的使用固体支架或液体球体培养的固有局限性限制了细胞自组装研究的实验自由度。在这里,我们研究了使用由包装的微凝胶制成的3D培养基作为固体支架和液体培养物之间的桥梁的多细胞自组装。我们发现,在这种基于微凝胶的3D培养基中,以不同体积分数分散的细胞聚集成不同大小和形状的簇,从而以最高的细胞密度形成了跨越整个系统的大型网络。我们发现,不同组装状态之间的过渡可以通过细胞-细胞内聚力的水平和填充微凝胶环境的屈服应力来控制。聚集体分形维数的测量结果表明,具有较高细胞间黏附力的聚维分形的球形性较小,形状更不规则,这表明细胞黏性会抑制聚集体的重排,类似于具有强粘性键的胶体的组装。因此,在这种类型的细胞自组装中,通常预期由于增加的细胞内聚力而产生的有效表面张力被抑制。聚集体分形维数的测量结果表明,具有较高细胞间黏附力的聚维分形的球形性较小,形状更不规则,这表明细胞黏性会抑制聚集体的重排,类似于具有强粘性键的胶体的组装。因此,在这种类型的细胞自组装中,通常预期由于增加的细胞内聚力而产生的有效表面张力被抑制。聚集体分形维数的测量结果表明,具有较高细胞间黏附力的聚维分形的球形性较小,形状更不规则,这表明细胞黏性会抑制聚集体的重排,类似于具有强粘性键的胶体的组装。因此,在这种类型的细胞自组装中,通常预期由于增加的细胞内聚力而产生的有效表面张力被抑制。
更新日期:2020-07-22
down
wechat
bug