当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wideband reduction of in-duct noise using acoustic metamaterial with serially connected resonators made with MPP and cavities
Applied Physics Letters ( IF 3.5 ) Pub Date : 2020-06-22 , DOI: 10.1063/5.0011558
Da-Young Kim 1 , Jeong-Guon Ih 1
Affiliation  

For the design of duct silencers, one should satisfy the essential constraints on the sound attenuation band, additional volume, and backpressure. For wideband sound attenuation, various acoustic metamaterials (AMM) using multiple resonators have been proposed. However, they often do not satisfy the spatial constraint, and the blocking of the conduit makes them impractical. This study proposes a compact silencing AMM unit for wideband sound reduction without deteriorating the mechanical performance. Previous works on the stacked micro-perforated panels (MPP) with different backing air gaps provide the basic idea of this work, which reveals the benefit of multiple resonators in adjusting the bandwidths to attain a wideband attenuation characteristic. The resistive element is also exploited in the MPP for suppressing the acoustic transparency of the detuned resonators. The formulated theoretical design method is tested by using a resonant unit cell configured with a serial connection of quadruple MPP layers, each air gap with a length of 30 mm and a uniform sectional area of 8 × 8 mm2. For minimizing the occupied volume, each cell surrounds the outer periphery of the main duct by folding, and the cell entry is flush-mounted on the duct wall. The test is conducted with the main duct of 30 × 30 mm2, and the attached 50 cells are arranged periodically with a 10-mm interval. The additional width of the duct is less than 1% of the wavelength. The measured power transmission coefficient is less than 0.2 for the range of 0.4–4.05 kHz, which agrees well with the prediction.

中文翻译:

使用由 MPP 和空腔制成的串联谐振器的声学超材料宽带降低管道内噪声

对于管道消声器的设计,应满足对声衰减带、附加体积和背压的基本约束。对于宽带声音衰减,已经提出了使用多个谐振器的各种声学超材料 (AMM)。然而,它们往往不满足空间约束,并且管道的阻塞使它们不切实际。这项研究提出了一种紧凑的消音 AMM 单元,用于在不降低机械性能的情况下减少宽带声音。先前在具有不同背衬气隙的堆叠微穿孔面板 (MPP) 上的工作提供了这项工作的基本思想,它揭示了多个谐振器在调整带宽以获得宽带衰减特性方面的好处。MPP 中还利用电阻元件来抑制失谐谐振器的声学透明度。公式化的理论设计方法是通过使用串联连接的四层 MPP 层配置的谐振单元来测试的,每个气隙的长度为 30 mm,均匀的截面积为 8 × 8 mm2。为了尽量减少占用体积,每个单元通过折叠围绕主管道的外周,并且单元入口齐平安装在管道壁上。试验以30×30mm2的主风管进行,附着的50个单元以10mm的间隔周期性排列。管道的附加宽度小于波长的 1%。测得的功率传输系数在 0.4-4.05 kHz 范围内小于 0.2,这与预测非常吻合。公式化的理论设计方法是通过使用串联连接的四层 MPP 层配置的谐振单元来测试的,每个气隙的长度为 30 mm,均匀的截面积为 8 × 8 mm2。为了尽量减少占用体积,每个单元通过折叠围绕主管道的外周,并且单元入口齐平安装在管道壁上。试验以30×30mm2的主风管进行,附着的50个单元以10mm的间隔周期性排列。管道的附加宽度小于波长的 1%。测得的功率传输系数在 0.4-4.05 kHz 范围内小于 0.2,这与预测非常吻合。公式化的理论设计方法是通过使用串联连接的四层 MPP 层配置的谐振单元来测试的,每个气隙的长度为 30 mm,均匀的截面积为 8 × 8 mm2。为了尽量减少占用体积,每个单元通过折叠围绕主管道的外周,并且单元入口齐平安装在管道壁上。试验以30×30mm2的主风管进行,附着的50个单元以10mm的间隔周期性排列。管道的附加宽度小于波长的 1%。测得的功率传输系数在 0.4-4.05 kHz 范围内小于 0.2,这与预测非常吻合。每个气隙长度为 30 mm,截面积为 8 × 8 mm2。为了尽量减少占用体积,每个单元通过折叠围绕主管道的外周,并且单元入口齐平安装在管道壁上。试验以30×30mm2的主风管进行,所附的50个单元以10mm的间隔周期性排列。管道的附加宽度小于波长的 1%。测得的功率传输系数在 0.4-4.05 kHz 范围内小于 0.2,这与预测非常吻合。每个气隙的长度为 30 mm,截面积为 8 × 8 mm2。为了尽量减少占用体积,每个单元通过折叠围绕主管道的外周,并且单元入口齐平安装在管道壁上。试验以30×30mm2的主风管进行,附着的50个单元以10mm的间隔周期性排列。管道的附加宽度小于波长的 1%。测得的功率传输系数在 0.4-4.05 kHz 范围内小于 0.2,这与预测非常吻合。附着的50个细胞以10mm的间隔周期性排列。管道的附加宽度小于波长的 1%。测得的功率传输系数在 0.4-4.05 kHz 范围内小于 0.2,这与预测非常吻合。附着的50个细胞以10mm的间隔周期性排列。管道的附加宽度小于波长的 1%。测得的功率传输系数在 0.4-4.05 kHz 范围内小于 0.2,这与预测非常吻合。
更新日期:2020-06-22
down
wechat
bug