当前位置: X-MOL 学术Nanotechnol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manipulating conductive network formation via 3D T-ZnO: A facile approach for a CNT-reinforced nanocomposite
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2020-06-08 , DOI: 10.1515/ntrev-2020-0043
Xianrong Huang 1, 2 , Lijian Zeng 3 , Renfu Li 1 , Zhaojun Xi 1 , Yichao Li 1
Affiliation  

Abstract To achieve an efficient conductive network while preserving the properties of carbon nanofillers is a challenging and essential issue for the fabrication of highly conductive polymeric nanocomposites. The present paper reports a facile approach to manipulate the network formation in the polymer matrix via introducing the tetrapod ZnO whisker (T-ZnO) in the carbon nanotube (CNT)-reinforced epoxy composite. The influence of T-ZnO on the CNT dispersion was evaluated by UV-Vis spectroscopy, rheological measurement, scanning electron microscopy (SEM), and electrical and mechanical properties of the bulk composite. The results showed that the CNTs tend to disperse more uniformly with an increase in T-ZnO loading. An optimized ratio of 1:2 between CNTs and T-ZnO was found to significantly enhance the electrical conductivity by 8 orders of magnitude. A low percolation threshold of 0.25 wt% CNTs was achieved in this hybrid CNTs/T-ZnO composite, which is only 40% of the threshold value in the pure CNTs/epoxy. The flexural strength and modulus of the hybrid composite were also improved noticeably in comparison to the CNTs/epoxy. The mechanism for increasing the performance of the nanocomposite was analyzed. These results indicated that the T-ZnO can assist to efficiently improve the dispersion and the formation of the conductive network, which is beneficial to the enhancement of the mechanical and electrical performance of the nanocomposite.

中文翻译:

通过 3D T-ZnO 控制导电网络的形成:一种用于 CNT 增强纳米复合材料的简便方法

摘要 在保持碳纳米填料性能的同时实现有效的导电网络是制备高导电聚合物纳米复合材料的一个具有挑战性和基本的问题。本论文报告了一种通过在碳纳米管 (CNT) 增强环氧树脂复合材料中引入四足体 ZnO 晶须 (T-ZnO) 来操纵聚合物基质中网络形成的简便方法。通过紫外-可见光谱、流变测量、扫描电子显微镜 (SEM) 以及大块复合材料的电学和机械性能评估了 T-ZnO 对 CNT 分散的影响。结果表明,随着 T-ZnO 负载量的增加,CNT 倾向于更均匀地分散。优化比率为 1:发现 CNT 和 T-ZnO 之间的 2 显着提高了 8 个数量级的电导率。在这种混合 CNTs/T-ZnO 复合材料中实现了 0.25 wt% CNTs 的低渗透阈值,这仅是纯 CNTs/环氧树脂阈值的 40%。与碳纳米管/环氧树脂相比,混合复合材料的弯曲强度和模量也显着提高。分析了提高纳米复合材料性能的机理。这些结果表明,T-ZnO 可以帮助有效改善分散和导电网络的形成,有利于提高纳米复合材料的机械和电学性能。这仅是纯碳纳米管/环氧树脂阈值的 40%。与碳纳米管/环氧树脂相比,混合复合材料的弯曲强度和模量也显着提高。分析了提高纳米复合材料性能的机理。这些结果表明,T-ZnO 可以帮助有效改善分散和导电网络的形成,有利于提高纳米复合材料的机械和电学性能。这仅是纯碳纳米管/环氧树脂阈值的 40%。与碳纳米管/环氧树脂相比,混合复合材料的弯曲强度和模量也显着提高。分析了提高纳米复合材料性能的机理。这些结果表明,T-ZnO 可以帮助有效改善分散和导电网络的形成,有利于提高纳米复合材料的机械和电学性能。
更新日期:2020-06-08
down
wechat
bug