当前位置: X-MOL 学术Bioresource Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia.
Bioresource Technology ( IF 9.7 ) Pub Date : 2020-06-25 , DOI: 10.1016/j.biortech.2020.123739
Chunxing Li 1 , Xinyu Zhu 1 , Irini Angelidaki 1
Affiliation  

Syngas biomethanation is an attractive process for extending application of gasification products. In the present study, anaerobic sludges from three methanogenic reactors feeding cattle manure (CS), sewage sludge (SS) and gaseous H2/CO2 (GS) were used to investigate the effect of microbial consortia composition on syngas biomethanation. The results showed that CS presented the highest CO consumption rate due to its highest relative abundance of CO consuming bacteria. The CO was mainly converted to acetate, and syntrophic acetate oxidization (SAO) bacteria converted acetate to H2/CO2 for hydrogenotrophic methanogenesis in CS and SS. However, acetate was accumulated in GS for lacking acetoclastic methanogens and SAO bacteria, leading to lower biomethanation efficiency. Additionally, adding stoichiometric H2 could convert CO and CO2 to nearly pure methane, while, the CO consumption rate declined in H2 added systems. The results present novel insights into microbial consortia on CO conversion and syngas biomethanation.



中文翻译:

一氧化碳转化和合成气的生物甲烷化作用由不同的微生物联盟介导。

合成气生物甲烷化是吸引气化产品应用的有吸引力的方法。在本研究中,使用来自三个饲喂牛粪(CS),污水污泥(SS)和气态H 2 / CO 2(GS)的产甲烷反应器的厌氧污泥来研究微生物群落组成对合成气生物甲烷化的影响。结果表明,由于CS消耗细菌的相对丰度最高,因此CS表现出最高的CO消耗率。CO主要转化为乙酸盐,而腐殖酸乙酸氧化(SAO)细菌将乙酸盐转化为H 2 / CO 2在CS和SS中的氢营养性甲烷生成。但是,由于缺乏破骨细胞产甲烷菌和SAO细菌,乙酸盐在GS中积累,导致生物甲烷化效率降低。另外,添加化学计量的H 2可以将CO和CO 2转化为几乎纯净的甲烷,而在添加H 2的系统中,CO的消耗率下降。结果提供了有关CO转化和合成气生物甲烷化的微生物联盟的新见解。

更新日期:2020-06-29
down
wechat
bug