当前位置: X-MOL 学术Alex. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
FSI-based structural optimization of thin bladed composite propellers
Alexandria Engineering Journal ( IF 6.2 ) Pub Date : 2020-06-26 , DOI: 10.1016/j.aej.2020.06.032
Mohamed Hussain , Yehia Abdel-Nasser , Adel Banawan , Yasser M. Ahmed

Lamination of thin bladed composite marine propellers necessitates dropping layers following thickness variation to produce lighter propeller with good elastic damping. Composite blade is subjected to multiaxial loads resulted from nonuniformly distributed hydrodynamic pressure that cause the blade to undergo combined structural response of bent and twist therefore, strength evaluation of such tapered laminate is a highly nontrivial process that include significant fluid–structure interaction (FSI). This research aims to investigate the strength of composite propeller using unconstrained stacking-sequence optimization based on fully coupled CFD-FEA analysis. Different hub idealization techniques were studied to determine the most accurate treatment in predicting stress and deformation of the blade. Composite model configured for propeller VP1304 after modification on blade thickness and, initial analysis on balanced-stacking of [0, 90, 45,−45] were set as a benchmark for optimization process targeting to minimize failure index; calculated according to Puck failure theory considering fiber and matrix failure as well as delamination. Delamination is evidenced to be utmost critical mode of failure whereas, the optimization resulted in an optimum laminate with unbalanced nonsystematic stacking that succeeded to; reduce interlaminar stresses, avoid failure and, reduce maximum value of IRF (Inverse Reserve Factor) by 50% compared to the predefined balanced-stacking benchmark.



中文翻译:

基于FSI的薄叶片复合螺旋桨结构优化

薄叶片复合船用螺旋桨的层压需要在厚度变化后掉落层,以生产出具有良好弹性阻尼的轻型螺旋桨。复合材料叶片承受的是不均匀分布的水动力压力所引起的多轴载荷,该压力导致叶片经受弯曲和扭曲的组合结构响应,因此,这种锥形层压板的强度评估是一个非常重要的过程,其中包括显着的流固耦合(FSI)。本研究旨在通过基于完全耦合CFD-FEA分析的无约束堆叠顺序优化研究复合材料螺旋桨的强度。研究了不同的轮毂理想化技术,以确定最准确的处理方法来预测叶片的应力和变形。在修改桨叶厚度和[0,90,45,-45]的平衡堆放量初始分析之后,为螺旋桨VP1304配置的复合模型被设置为优化过程的基准,以最大程度地降低故障指数;根据Puck破坏理论计算得出,考虑了纤维和基体破坏以及分层。事实证明,分层是最关键的失效模式,而优化则导致了具有不平衡非系统性堆叠的最优层压板。与预定义的平衡堆叠基准相比,可减少层间应力,避免故障并降低IRF(逆储备因子)的最大值50%。−45]被设置为优化过程目标的基准,以最大程度地降低故障指数;根据Puck破坏理论计算得出,考虑了纤维和基体破坏以及分层。事实证明,分层是最关键的失效模式,而优化则导致了具有不平衡非系统性堆叠的最优层压板。与预定义的平衡堆叠基准相比,可减少层间应力,避免故障并降低IRF(逆储备因子)的最大值50%。−45]被设置为优化过程目标的基准,以最大程度地降低故障指数;根据Puck破坏理论计算得出,考虑了纤维和基体破坏以及分层。事实证明,分层是最关键的失效模式,而优化则导致了具有不平衡非系统性堆叠的最优层压板。与预定义的平衡堆叠基准相比,可减少层间应力,避免故障并降低IRF(逆储备因子)的最大值50%。

更新日期:2020-06-26
down
wechat
bug