当前位置: X-MOL 学术Mater. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Innovative compound-type anchorage system for a large-diameter pultruded carbon/glass hybrid rod for bridge cable
Materials and Structures ( IF 3.4 ) Pub Date : 2020-06-26 , DOI: 10.1617/s11527-020-01510-y
Chenggao Li , Rui Guo , Guijun Xian , Hui Li

Fiber reinforced polymer (FRP) composite rods are gradually applied in the bridge structures as the stay cable to replace the steel cables. The orthotropic properties of FRPs parallel and perpendicular to the fiber direction lead to a huge challenge in anchoring. In the present paper, a hybrid fiber reinforced polymer (HFRP) composite rod was developed as the bridge stay cable through the pultrusion technology with the diameter of 19 mm, including carbon fiber reinforced polymer core (CFC) and glass fiber reinforced polymer shell (GFS). The simplified mechanical model based on equilibrium, geometric and physical equations and finite element analysis were conducted to analyze the potential failure modes of anchoring HFRP rods. It can be observed that the shear failure of CFC/GFS interface of HFRP anchorage system resulted in a low anchorage bearing capacity. An innovative compound-type anchorage system through the mechanical extrusion and chemical bonding was proposed to provide the reliable anchorage bearing capacity for HFRP rods. It can be found that the stress distribution of compound-type anchorage system was uniform along the anchoring length. The tensile load was effectively transferred to the steel anchor by the extrusion and bonding between HFRP rods and steel wedge. The fatigue life of HFRP rods with the compound-type anchorage system increased 5.88–7.44 times relative to the mechanical anchorage system, and 42.4 times relative to the bonding-type anchorage system.

中文翻译:

用于桥梁缆索大直径拉挤碳/玻璃混合杆的创新复合型锚固系统

纤维增强聚合物(FRP)复合杆作为斜拉索逐渐应用于桥梁结构中,以取代钢索。FRP 平行和垂直于纤维方向的正交各向异性特性给锚定带来了巨大挑战。在本文中,通过拉挤技术开发了一种混合纤维增强聚合物(HFRP)复合杆作为桥梁斜拉索,直径为 19 mm,包括碳纤维增强聚合物芯(CFC)和玻璃纤维增​​强聚合物壳(GFS)。 )。基于平衡、几何和物理方程以及有限元分析的简化力学模型被用来分析锚固HFRP杆的潜在失效模式。可以看出,HFRP锚固系统CFC/GFS界面的剪切破坏导致锚固承载力较低。提出了一种通过机械挤压和化学粘合的创新复合型锚固系统,为HFRP杆提供可靠的锚固承载力。可以发现,复合型锚固系统的应力沿锚固长度分布是均匀的。拉伸载荷通过 HFRP 杆与钢楔之间的挤压和粘合有效地传递给钢锚。复合型锚固系统HFRP杆的疲劳寿命是机械锚固系统的5.88-7.44倍,是粘结型锚固系统的42.4倍。提出了一种通过机械挤压和化学粘合的创新复合型锚固系统,为HFRP杆提供可靠的锚固承载力。可以发现,复合型锚固系统的应力沿锚固长度分布是均匀的。拉伸载荷通过 HFRP 杆与钢楔之间的挤压和粘合有效地传递给钢锚。复合型锚固系统HFRP杆的疲劳寿命是机械锚固系统的5.88-7.44倍,是粘结型锚固系统的42.4倍。提出了一种通过机械挤压和化学粘合的创新复合型锚固系统,为HFRP杆提供可靠的锚固承载力。可以发现,复合型锚固系统的应力沿锚固长度分布是均匀的。拉伸载荷通过 HFRP 杆与钢楔之间的挤压和粘合有效地传递给钢锚。复合型锚固系统HFRP杆的疲劳寿命是机械锚固系统的5.88-7.44倍,是粘结型锚固系统的42.4倍。拉伸载荷通过 HFRP 杆与钢楔之间的挤压和粘合有效地传递给钢锚。复合型锚固系统HFRP杆的疲劳寿命是机械锚固系统的5.88-7.44倍,是粘结型锚固系统的42.4倍。拉伸载荷通过 HFRP 杆与钢楔之间的挤压和粘合有效地传递给钢锚。复合型锚固系统HFRP杆的疲劳寿命是机械锚固系统的5.88-7.44倍,是粘结型锚固系统的42.4倍。
更新日期:2020-06-26
down
wechat
bug