当前位置: X-MOL 学术Classical Quant. Grav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On perturbative constraints for vacuum f(R) gravity
Classical and Quantum Gravity ( IF 3.6 ) Pub Date : 2020-06-25 , DOI: 10.1088/1361-6382/ab8051
Daniel Molano 1, 2 , Fabin Daro Villalba 1, 2 , Leonardo Castaeda 1 , Pedro Bargueo 3
Affiliation  

Perturbative techniques are important for modified theories of gravity since they allow to calculate deviations from General Relativity without recurring to exact solutions, which can be difficult to find. When applied to models such as $f(R)$ gravity, these techniques introduce corrections in the field equations that involve higher order derivatives. Such corrections must be handled carefully to have a well defined perturbative scheme, and this can be achieved through the method of perturbative constraints, where the coefficient of the additional term in the action is used as expansion parameter for the quantities of interest. In this work, we implement a perturbative framework that compares solutions in modified theories of gravity with solutions of the Einstein field equations, by following the guidelines of perturbation theory constructed in General Relativity together with the perturbative constraints rationale. By using this formalism, we demonstrate that a consistent $f(R)$ perturbation theory in vacuum, for an important class of $f(R)$ functions, produces no additional effects with respect to what is expected from the perturbation theory of General Relativity. From this result, we argue that there are fundamental limitations that explain why the solutions of some $f(R)$ models can be disconnected from their general relativistic counterparts, in the sense that the limit that leads from the $f(R)$ action to General Relativity does not transform the solutions accordingly.

中文翻译:

关于真空 f(R) 重力的微扰约束

微扰技术对于修正的引力理论很重要,因为它们允许计算与广义相对论的偏差,而无需重复得到可能难以找到的精确解。当应用于诸如 $f(R)$ 重力等模型时,这些技术会在涉及高阶导数的场方程中引入修正。这种修正必须小心处理,才能有一个明确定义的微扰方案,这可以通过微扰约束的方法来实现,其中动作中附加项的系数用作感兴趣量的扩展参数。在这项工作中,我们实施了一个微扰框架,将修正引力理论中的解与爱因斯坦场方程的解进行比较,通过遵循广义相对论中构建的微扰理论的指导方针以及微扰约束的基本原理。通过使用这种形式主义,我们证明了真空中一致的 $f(R)$ 微扰理论,对于一类重要的 $f(R)$ 函数,不会对 General 的微扰理论的预期产生额外的影响。相对论。从这个结果,我们认为存在基本的局限性,可以解释为什么某些 $f(R)$ 模型的解可以与它们的一般相对论对应物脱节,因为 $f(R)$ 导致的极限广义相对论的行动不会相应地改变解决方案。我们证明,对于一类重要的 $f(R)$ 函数,真空中一致的 $f(R)$ 微扰理论不会对广义相对论微扰理论的预期产生额外的影响。从这个结果,我们认为存在基本的局限性,可以解释为什么某些 $f(R)$ 模型的解可以与它们的一般相对论对应物脱节,因为 $f(R)$ 导致的极限广义相对论的行动不会相应地改变解决方案。我们证明,对于一类重要的 $f(R)$ 函数,真空中一致的 $f(R)$ 微扰理论不会对广义相对论微扰理论的预期产生额外的影响。从这个结果,我们认为存在基本的局限性,可以解释为什么某些 $f(R)$ 模型的解可以与它们的一般相对论对应物脱节,因为 $f(R)$ 导致的极限广义相对论的行动不会相应地改变解决方案。
更新日期:2020-06-25
down
wechat
bug