当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to "Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells".
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-06-24 , DOI: 10.1021/jacs.0c06421
Shuang Yang , Jun Dai , Zhenhua Yu , Yuchuan Shao , Yu Zhou , Xun Xiao , Xiao Cheng Zeng , Jinsong Huang

Page 5782. Some molecular structures were incorrect in Figure 1c (one more −CH2– should be added in this figure). The corrected figure is shown below. Page 5783. Some molecular structures were incorrect in Figure 2a (one more −CH2– should be added in this figure). The corrected figure is shown below. Page 5785. The molecular structure was incorrect in Figure 5 (one more −CH2– should be added in this figure). The corrected figure is shown below. Figure 1. (a) Device structure of planar heterojunction perovskite solar cells. (b) Schematic illustration of surface charged defects. (c) Chemical structure of passivation molecules with marked amino (blue) and carboxyl (red) groups. (d) PL and (e) TRPL spectra of perovskite films with different passivation layers. (f) JV curves and (g) statistics of VOC distribution of perovskite solar cells with different passivation layers. Figure 2. (a) Chemical structure of passivation molecules with marked alkyl and phenyl groups. (b) Photograph of iodine dissolved in the hexane solution without and with 20% toluene (v:v). The concentration of iodine is 1 mg/mL. (c) UV–vis absorption spectra of iodine dissolved in different solvents. (d) PL and (e) TRPL spectra of perovskite films with different passivation layers. (f) JV curves and (g) statistics of VOC distribution of perovskite solar cells with different passivation layers. Figure 5. Schematic illustration of the origin of D4TBP passivation effect on different defect sites. This article has not yet been cited by other publications. Figure 1. (a) Device structure of planar heterojunction perovskite solar cells. (b) Schematic illustration of surface charged defects. (c) Chemical structure of passivation molecules with marked amino (blue) and carboxyl (red) groups. (d) PL and (e) TRPL spectra of perovskite films with different passivation layers. (f) JV curves and (g) statistics of VOC distribution of perovskite solar cells with different passivation layers. Figure 2. (a) Chemical structure of passivation molecules with marked alkyl and phenyl groups. (b) Photograph of iodine dissolved in the hexane solution without and with 20% toluene (v:v). The concentration of iodine is 1 mg/mL. (c) UV–vis absorption spectra of iodine dissolved in different solvents. (d) PL and (e) TRPL spectra of perovskite films with different passivation layers. (f) JV curves and (g) statistics of VOC distribution of perovskite solar cells with different passivation layers. Figure 5. Schematic illustration of the origin of D4TBP passivation effect on different defect sites.

中文翻译:

对“钙钛矿型太阳能电池中极小的开路电压损耗的钝化分子结构的修正”。

Page5782。图1c中某些分子结构不正确(该图中应再添加一个-CH 2 –)。校正后的数字如下所示。Page 5783.图2a中的某些分子结构不正确(应在该图中添加另一个-CH 2 –)。校正后的数字如下所示。第5785页。图5中的分子结构不正确(该图中应再添加一个-CH 2-)。校正后的数字如下所示。图1.(a)平面异质结钙钛矿太阳能电池的器件结构。(b)表面带电缺陷的示意图。(c)具有明显的氨基(蓝色)和羧基(红色)基团的钝化分子的化学结构。(d)具有不同钝化层的钙钛矿薄膜的PL和(e)TRPL光谱。(f)JV钝化层不同的钙钛矿太阳能电池的VOC分布曲线和(g)统计。图2.(a)具有明显烷基和苯基的钝化分子的化学结构。(b)在没有和有20%甲苯(v:v)的情况下溶解在己烷溶液中的碘的照片。碘的浓度为1 mg / mL。(c)溶解在不同溶剂中的碘的紫外可见吸收光谱。(d)具有不同钝化层的钙钛矿薄膜的PL和(e)TRPL光谱。(f)JV钝化层不同的钙钛矿太阳能电池的VOC分布曲线和(g)统计。图5.不同缺陷部位的D4TBP钝化作用的起源示意图。本文尚未被其他出版物引用。图1.(a)平面异质结钙钛矿太阳能电池的器件结构。(b)表面带电缺陷的示意图。(c)具有明显的氨基(蓝色)和羧基(红色)基团的钝化分子的化学结构。(d)具有不同钝化层的钙钛矿薄膜的PL和(e)TRPL光谱。(f)JV钝化层不同的钙钛矿太阳能电池的VOC分布曲线和(g)统计。图2.(a)具有明显烷基和苯基的钝化分子的化学结构。(b)在没有和有20%甲苯(v:v)的情况下溶解在己烷溶液中的碘的照片。碘的浓度为1 mg / mL。(c)溶解在不同溶剂中的碘的紫外可见吸收光谱。(d)具有不同钝化层的钙钛矿薄膜的PL和(e)TRPL光谱。(f)JV曲线和(g)具有不同钝化层的钙钛矿太阳能电池的VOC分布统计。图5.不同缺陷部位的D4TBP钝化作用的起源示意图。
更新日期:2020-07-08
down
wechat
bug