当前位置: X-MOL 学术Geophys. J. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multichannel deconvolution method to retrieve source–time functions: application to the regional Lg wave
Geophysical Journal International ( IF 2.8 ) Pub Date : 2020-06-25 , DOI: 10.1093/gji/ggaa303
Andrea Gallegos 1 , Jiakang Xie 1, 2
Affiliation  

The retrieval of high-frequency seismic source–time functions (STFs) of similar earthquakes tends to be an ill-posed problem, causing unstable solutions. This is particularly true when waveforms are complex and band-limited, such as the regional phase Lg. We present a new procedure implementing the multichannel deconvolution (MCD) method to retrieve robust and objective STF solutions. The procedure relies on well-developed geophysical inverse theory to obtain stable STF solutions that jointly minimize the residual misfit, model roughness and data underfitting. MCD is formulated as a least-squares inverse problem with a Tikhonov regularization. The problem is solved using a convex optimization algorithm which rapidly converges to the global minimum while accommodating physical solution constraints including positivity, causality, finiteness and known seismic moments. We construct two L-shaped curves showing how the solution residual and roughness vary with trial solution durations. The optimal damping is chosen when the curves have acceptable levels while exhibiting no oscillations caused by solution instability. The optimal solution duration is chosen to avoid a rapidly decaying segment of the residual curve caused by parameter underfitting. We apply the MCD method to synthetic Lg data constructed by convolving a real Lg waveform with five pairs of simulated STFs. Four pairs consist of single triangular or parabolic pulses. The remaining pair consists of multipulse STFs with a complex, four-spike large STF. Without noise, the larger STFs in all single-pulse cases are well-recovered with Tikhonov regularization. Shape distortions are minor and duration errors are within 5 per cent. The multipulse case is a rare well-posed problem for which the true STFs are recovered without regularization. When a noise of ∼20 per cent is added to the synthetic data, the MCD method retrieves large single-pulse STFs with minor shape distortions and small duration errors (from 0 to 18 per cent). For the multipulse case, the retrieved large STF is overly smeared, losing details in the later portion. The small STF solutions for all cases are less resilient. Finally, we apply the MCD method to Lg data from two pairs of moderate earthquakes in central Asia. The problem becomes more ill-posed owing to lower signal-to-noise ratios (as low as 3) and non-identical Green's functions. A shape constraint of the small STF is needed. For the larger events with M5.7 and 5.8, the retrieved STFs are asymmetric, rising sharply and lasting about 2.0 and 2.5 s. We estimate radiated energies of 2.47 × 1013 and 2.53 × 1013 J and apparent stresses of 1.4 and 1.9 MPa, which are very reasonable. Our results are very consistent with those obtained in a previous study that used a very different, less objective ‘Landweber deconvolution’ method and a pre-fixed small STF duration. Novel improvements made by our new procedure include the application of a convex algorithm rather than a Newton-like method, a procedure for simultaneously optimizing regularization and solution duration parameters, a shape constraint for the smaller STF, and application to the complex Lg wave.

中文翻译:

一种多通道反卷积方法来检索源时间函数:在区域Lg波中的应用

检索类似地震的高频地震源-时间函数(STF)往往是一个不适当地的问题,从而导致解决方案不稳定。当波形很复杂且带宽受限时(例如区域相位Lg),尤其如此。我们提出了一种新程序,该程序实现了多通道反卷积(MCD)方法,以检索鲁棒且客观的STF解决方案。该程序依靠完善的地球物理反演理论来获得稳定的STF解决方案,该解决方案可将残留失配,模型粗糙度和数据欠拟合最小化。MCD用Tikhonov正则化公式化为最小二乘反问题。使用凸优化算法可解决该问题,该算法可快速收敛到全局最小值,同时适应物理解决方案约束,包括正,因果关系,有限度和已知的地震矩。我们构建了两个L形曲线,显示了溶液残留量和粗糙度随试验溶液持续时间的变化而变化。当曲线具有可接受的水平且没有因溶液不稳定性引起的振荡时,选择最佳阻尼。选择最佳求解持续时间是为了避免因参数拟合不足而导致的残余曲线快速衰减。我们将MCD方法应用于通过将真实Lg波形与五对模拟STF卷积而构建的合成Lg数据。四对由单个三角形或抛物线脉冲组成。其余的一对由具有复杂的四尖峰大型STF的多脉冲STF组成。在没有噪声的情况下,通过Tikhonov正则化可以很好地恢复所有单脉冲情况下较大的STF。形状变形很小,持续时间误差在5%之内。多脉冲情况是一个罕见的适度问题,对于该问题,无需进行正则化即可恢复真正的STF。当将约20%的噪声添加到合成数据中时,MCD方法将检索出较大的单脉冲STF,这些STF具有较小的形状失真和较小的持续时间误差(从0%到18%)。对于多脉冲情况,检索到的大型STF会被过度涂抹,从而在后面的部分中丢失细节。适用于所有情况的小型STF解决方案的弹性较差。最后,我们将MCD方法应用于中亚两对中度地震的Lg数据。由于较低的信噪比(低至3)和不相同的格林函数,该问题变得更加不适。需要小的STF的形状约束。对于较大的事件 多脉冲情况是一个罕见的适度问题,对于该问题,无需进行正则化即可恢复真正的STF。当将约20%的噪声添加到合成数据中时,MCD方法将检索出较大的单脉冲STF,这些STF具有较小的形状失真和较小的持续时间误差(从0%到18%)。对于多脉冲情况,检索到的大型STF会被过度涂抹,从而在后面的部分中丢失细节。适用于所有情况的小型STF解决方案的弹性较差。最后,我们将MCD方法应用于中亚两对中度地震的Lg数据。由于较低的信噪比(低至3)和不相同的格林函数,该问题变得更加不适。需要小的STF的形状约束。对于较大的事件 多脉冲情况是一个罕见的适度问题,对于该问题,无需进行正则化即可恢复真正的STF。当将约20%的噪声添加到合成数据中时,MCD方法将检索出较大的单脉冲STF,这些STF具有较小的形状失真和较小的持续时间误差(从0%到18%)。对于多脉冲情况,检索到的大型STF会被过度涂抹,从而在后面的部分中丢失细节。适用于所有情况的小型STF解决方案的弹性较差。最后,我们将MCD方法应用于中亚两对中度地震的Lg数据。由于较低的信噪比(低至3)和不相同的格林函数,该问题变得更加不适。需要小的STF的形状约束。对于较大的事件 MCD方法检索形状失真较小且持续时间误差较小(从0%到18%)的大型单脉冲STF。对于多脉冲情况,检索到的大型STF会被过度涂抹,从而在后面的部分中丢失细节。适用于所有情况的小型STF解决方案的弹性较差。最后,我们将MCD方法应用于中亚两对中度地震的Lg数据。由于较低的信噪比(低至3)和不相同的格林函数,该问题变得更加不适。需要小的STF的形状约束。对于较大的事件 MCD方法检索形状失真较小且持续时间误差较小(从0%到18%)的大型单脉冲STF。对于多脉冲情况,检索到的大型STF会被过度涂抹,从而在后面的部分中丢失细节。适用于所有情况的小型STF解决方案的弹性较差。最后,我们将MCD方法应用于中亚两对中度地震的Lg数据。由于较低的信噪比(低至3)和不相同的格林函数,该问题变得更加不适。需要小的STF的形状约束。对于较大的事件 适用于所有情况的小型STF解决方案的弹性较差。最后,我们将MCD方法应用于中亚两对中度地震的Lg数据。由于较低的信噪比(低至3)和不相同的格林函数,该问题变得更加不适。需要小的STF的形状约束。对于较大的事件 适用于所有情况的小型STF解决方案的弹性较差。最后,我们将MCD方法应用于中亚两对中度地震的Lg数据。由于较低的信噪比(低至3)和不相同的格林函数,该问题变得更加不适。需要小的STF的形状约束。对于较大的事件在M 5.7和5.8中,检索到的STF不对称,急剧上升,持续约2.0和2.5 s。我们估计辐射能量为2.47×10 13和2.53×10 13  J,表观应力为1.4和1.9 MPa,这是非常合理的。我们的结果与以前的研究非常一致,该研究使用了非常不同的,客观性较低的“ Landweber反卷积”方法和预先设定的较小STF持续时间。我们的新程序所进行的新颖改进包括:应用凸算法而不是类似牛顿的方法;同时优化正则化和求解持续时间参数的程序;较小STF的形状约束;以及对复杂Lg波的应用。
更新日期:2020-07-20
down
wechat
bug