当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical spin-dependent beam separation in cyclic group symmetric metasurface
Nanophotonics ( IF 6.5 ) Pub Date : 2020-06-25 , DOI: 10.1515/nanoph-2020-0160
Yeon Ui Lee 1 , Igor Ozerov 2 , Frédéric Bedu 2 , Ji Su Kim 1 , Frédéric Fages 2 , Jeong Weon Wu 1
Affiliation  

Light possesses both spin and orbital angular momentum (AM). While spin AM is determined by helicity of circular-polarization, orbital AM is characterized by topological charge of vortex beam. Interaction of AM with optical beam orbit leads to optical spin Hall or orbital Hall effect, exhibited as spin-dependent or topological charge-dependent transverse shift of optical beam. Conservation of AM enables spin-to-orbital AM conversion, where circular-polarized Gaussian beam is converted to opposite-helicity circular-polarized vortex beam with topological charge $\pm 2$, an example of controlling spatial beam profiling by spin flip. However, the resultant vortex beam has the beam center of gravity unchanged, the same as that of incident Gaussian beam, meaning a null transverse shift. Here we introduce a cyclic group symmetric metasurface to demonstrate generation of vortex beam exhibiting spin-dependent transverse shift, namely, spin- and orbital-Hall effect, attributed to an alteration of dynamical phase of scattered beam according to the order $n$ of cyclic group while keeping geometric phase constant. Capability of spin-controlled spatial beam profiling with a transverse shift via spin- and orbital-Hall effect has important implications for spatial demultiplexing in optical communication utilizing orbital AM mode division multiplexing as well as for optical vortex tweezer and signal processing involving vortex beams.

中文翻译:

循环群对称超表面中的光学自旋相关光束分离

光具有自旋和轨道角动量 (AM)。自旋 AM 由圆极化的螺旋度决定,而轨道 AM 的特征在于涡旋光束的拓扑电荷。AM与光束轨道的相互作用导致光学自旋霍尔或轨道霍尔效应,表现为光束的自旋相关或拓扑电荷相关的横向位移。AM 的守恒可以实现自旋到轨道的 AM 转换,其中圆偏振高斯光束被转换为具有拓扑电荷 $\pm 2$ 的相反螺旋圆偏振涡旋光束,这是通过自旋翻转控制空间光束轮廓的一个例子。然而,合成涡旋光束的光束重心不变,与入射高斯光束的重心相同,这意味着零横向位移。在这里,我们引入了一个循环群对称超曲面来证明涡旋光束的产生表现出与自旋相关的横向位移,即自旋和轨道霍尔效应,这归因于散射光束的动态相位根据循环保持几何相位不变。通过自旋和轨道霍尔效应进行横向位移的自旋控制空间光束分析的能力对于利用轨道 AM 模分复用的光通信中的空间解复用以及涉及涡旋光束的光学涡流镊子和信号处理具有重要意义。归因于散射光束的动态相位根据循环群的阶数 $n$ 发生变化,同时保持几何相位不变。通过自旋和轨道霍尔效应进行横向位移的自旋控制空间光束分析的能力对于利用轨道 AM 模分复用的光通信中的空间解复用以及涉及涡旋光束的光学涡流镊子和信号处理具有重要意义。归因于散射光束的动态相位根据循环群的阶数 $n$ 发生变化,同时保持几何相位不变。通过自旋和轨道霍尔效应进行横向位移的自旋控制空间光束分析的能力对于利用轨道 AM 模分复用的光通信中的空间解复用以及涉及涡旋光束的光学涡流镊子和信号处理具有重要意义。
更新日期:2020-06-25
down
wechat
bug