当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A kinase bioscavenger provides antibiotic resistance by extremely tight substrate binding.
Science Advances ( IF 11.7 ) Pub Date : 2020-06-24 , DOI: 10.1126/sciadv.aaz9861
Stanislav S Terekhov 1, 2 , Yuliana A Mokrushina 1, 2 , Anton S Nazarov 1 , Alexander Zlobin 1, 3 , Arthur Zalevsky 1, 3, 4 , Gleb Bourenkov 5 , Andrey Golovin 1, 3, 4 , Alexey Belogurov 1 , Ilya A Osterman 2, 6 , Alexandra A Kulikova 7 , Vladimir A Mitkevich 7 , Hua Jane Lou 8 , Benjamin E Turk 8 , Matthias Wilmanns 5 , Ivan V Smirnov 1, 2 , Sidney Altman 9, 10 , Alexander G Gabibov 1, 2, 11
Affiliation  

Microbial communities are self-controlled by repertoires of lethal agents, the antibiotics. In their turn, these antibiotics are regulated by bioscavengers that are selected in the course of evolution. Kinase-mediated phosphorylation represents one of the general strategies for the emergence of antibiotic resistance. A new subfamily of AmiN-like kinases, isolated from the Siberian bear microbiome, inactivates antibiotic amicoumacin by phosphorylation. The nanomolar substrate affinity defines AmiN as a phosphotransferase with a unique catalytic efficiency proximal to the diffusion limit. Crystallographic analysis and multiscale simulations revealed a catalytically perfect mechanism providing phosphorylation exclusively in the case of a closed active site that counteracts substrate promiscuity. AmiN kinase is a member of the previously unknown subfamily representing the first evidence of a specialized phosphotransferase bioscavenger.



中文翻译:

激酶生物清除剂通过极其紧密的底物结合提供抗生素抗性。

微生物群落由致死剂——抗生素——进行自我控制。反过来,这些抗生素又受进化过程中选择的生物清除剂的调节。激酶介导的磷酸化代表了抗生素耐药性出现的一般策略之一。从西伯利亚熊微生物组中分离出的一种新的 AmiN 样激酶亚家族,通过磷酸化使抗生素阿米库马星失活。纳摩尔底物亲和力将 AmiN 定义为具有接近扩散极限的独特催化效率的磷酸转移酶。晶体学分析和多尺度模拟揭示了一种催化完美的机制,仅在一个封闭的活性位点可以抵消底物混杂的情况下提供磷酸化。

更新日期:2020-06-25
down
wechat
bug