当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic Layer Engineering of Epsilon‐Near‐Zero Ultrathin Films with Controllable Field Enhancement
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2020-06-25 , DOI: 10.1002/admi.202000844
Sudip Gurung 1 , Aleksei Anopchenko 1 , Subhajit Bej 1 , Jay Joyner 1 , Jason D. Myers 2 , Jesse Frantz 2 , Ho Wai Howard Lee 1, 3
Affiliation  

Enhanced and controlled light absorption, as well as field confinement in optically thin materials, are pivotal for energy‐efficient optoelectronics and nonlinear optical devices. Highly doped transparent conducting oxide (TCO) thin films can support the so‐called epsilon near zero (ENZ) modes in a frequency region of near‐zero permittivity, which can lead to the perfect light absorption and ultrastrong electric field intensity enhancement (FIE) within the films. To achieve full control over absorption and FIE, one must be able to tune the ENZ material properties as well as the film thickness. Here, engineered absorption and FIE are experimentally demonstrated in aluminum‐doped zinc oxide (AZO) thin films via control of their ENZ wavelengths, optical losses, and film thicknesses, tuned by adjusting the atomic layer deposition (ALD) parameters such as dopant ratio, deposition temperature, and the number of macrocycles. It is also demonstrated that under ENZ mode excitation, though the absorption and FIE are inherently related, the film thickness required for observing maximum absorption differs significantly from that for maximum FIE. This study on engineering ENZ material properties by optimizing the ALD process will be beneficial for the design and development of next‐generation tailorable photonic devices based on flat, zero‐index optics.

中文翻译:

具有可控场增强功能的Epsilon近零超薄薄膜的原子层工程

增强和受控的光吸收以及光学薄材料中的场限制对于节能的光电和非线性光学器件至关重要。高掺杂的透明导电氧化物(TCO)薄膜可以在介电常数接近零的频率范围内支持所谓的近零ε模式,这可以实现完美的光吸收和超强电场强度增强(FIE)在电影中。为了完全控制吸收和FIE,必须能够调整ENZ材料的特性以及膜的厚度。在这里,通过控制掺氮氧化锌(AZO)薄膜的ENZ波长,光学损耗和薄膜厚度,实验证明了工程吸收和FIE。通过调整原子层沉积(ALD)参数(例如掺杂剂比例,沉积温度和大环数)进行调整。还表明,在ENZ模式激发下,尽管吸收和FIE内在相关,但是观察最大吸收所需的膜厚度与最大FIE的膜厚度明显不同。通过优化ALD工艺对工程ENZ材料性能进行的研究将有益于基于平面零折射率光学器件的下一代可定制光子器件的设计和开发。观察最大吸收所需的膜厚度与最大FIE的显着不同。通过优化ALD工艺对工程ENZ材料特性进行的研究将有益于基于平面零折射率光学器件的下一代可定制光子器件的设计和开发。观察最大吸收所需的膜厚度与最大FIE的显着不同。通过优化ALD工艺对工程ENZ材料特性进行的研究将有益于基于平面零折射率光学器件的下一代可定制光子器件的设计和开发。
更新日期:2020-06-25
down
wechat
bug