当前位置: X-MOL 学术Environ. Toxicol. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ET&C Best Paper of 2019.
Environmental Toxicology and Chemistry ( IF 3.6 ) Pub Date : 2020-06-25 , DOI: 10.1002/etc.4754


WINNER OF THE 2019 BEST PAPER AWARD:

Detecting amphibians in agricultural landscapes using environmental DNA reveals the importance of wetland condition

Gabrielle E. Ruso, Christy A. Morrissey, Natacha S. Hogan, Claudia Sheedy, Melanie J. Gallant, and Timothy D. Jardine

https://doi.org/10.1002/etc.4598

The greatest challenge facing contemporary ecotoxicology is how to reliably assess ecosystem impacts of chemical pollutants and distinguish it from many other environmental factors. Wetland ecosystem are facing multiple physical, biological, and chemical stressors, which may directly or indirectly affect wildlife at the level of individual health, population, community, ecological functions, and services. Recent developments in biomonitoring technologies and effect analysis tools provide direct evidences on the health status of biological communities in the field, which could overcome the limitation of relying on the simulation test or mathematical model in the laboratory to evaluate ecological hazards and risks. Ruso et al. describes a thoroughly conducted and innovative study of environmental DNA (eDNA)‐based wildlife biomonitoring in the Prairie Pothole Region of North America's northern Great Plains. The use of eDNA were compared to traditional methods (visual encounter surveys [VES] and tadpole dip‐net surveys) for determining wood frog presence or absence in these wetland ecosystems. Using boosted regression tree (BRT) models, their results clearly demonstrated the relative importance of multiple agricultural factors affecting wood frog presence in wetland habitats.

REFERENCE

Ruso GE, Morrissey CA, Hogan NS, Sheedy C, Gallant MJ, Jardine TD. 2019. Detecting amphibians in agricultural landscapes using environmental DNA reveals the importance of wetland condition. Environ Toxicol Chem 38:2750‐2763.

Xiaowei Zhang

School of the Environment, Nanjing University, Nanjing, Jiangsu, China

image

Best Paper Award Gabrielle E. Ruso.

EXCEPTIONAL PAPERS [Format the same as the H1 for the Focus Article]

image

High‐throughput screening and environmental risk assessment: state of the science and emerging applications

D.L. Villeneuve, K. Coady, B.I. Escher, E. Mihaich, C.A. Murphy, T. Schlekat, and N. Garcia‐Reyero

https://doi.org/10.1002/etc.4315

image

Target site model: Predicting mode of action and aquatic organism acute toxicity using abraham parameters and feature‐weighted k‐nearest neighbors classification

K.S. Boone and D.M. Di Toro

https://doi.org/10.1002/etc.4324

image

Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters

V. Adam, T. Yang, and B. Nowac

https://doi.org/10.1002/etc.4323

image

The effects of bifenthrin and temperature on the endocrinology of juvenile chinook salmon

M. Giroux, J. Gan, and D. Schlenk

https://doi.org/10.1002/etc.4372

image

Linking mitochondrial dysfunction to organismal and population health in the context of environmental pollutants: Progress and considerations for mitochondrial adverse outcome Pathways

D.A. Dreier, D.F. Mello, J.N. Meyer, and C.J. Martyniuk

https://doi.org/10.1002/etc.4453

image

Microplastic–contaminant interactions: Influence of nonlinearity and coupled mass transfer

S. Seidensticker, C. Zarfl, O.A. Cirpka, and P. Grathwohl

https://doi.org/10.1002/etc.4447

image

Hitting reset on sediment toxicity: Sediment homogenization alters the toxicity of metal amended sediments

D.M. Costello, A.M. Harrison, C.R. Hammerschmidt, R.M. Mendonca, and G.A. Burton Jr.

https://doi.org/10.1002/etc.4512

image

Direct measurement of acid dissociation constants of trace organic compounds at nanomolar levels in aqueous solutionby condensed phase–Membrane introduction mass spectrometry

J.F. Feehan, J. Monaghan, C.G. Gill, and E.T. Krogh

https://doi.org/10.1002/etc.4519

image

Bioaccumulation in functionally different species: OngoingInput of PCBs with sediment deposition to activated carbon remediated bed sediments

P.T. Gidley, A.J. Kennedy, G.R. Lotufo, A.H. Wooley, N.L. Melby, U. Ghosh, R.M. Burgess, P. Mayer, L.A. Fernandez, S.N. Schmidt, A.P. Wang, T.S. Bridges, and C.E. Ruiz

https://doi.org/10.1002/etc.4526

image

Use of a food web bioaccumulation model to uncover spatially integrated polychlorinated biphenyl exposures in Detroit River sport fish

J. Li, A.M. Mcleod, S.P. Bhavsar, J. Bohr, A. Grgicak‐Mannion, and K. Drouillard

https://doi.org/10.1002/etc.4569

COMPLETE LIST OF NOMINATED PAPERS

Ruso GE, Morrissey CA, Hogan NS, Sheedy C, Gallant MJ, Jardine TD. 2019. Detecting amphibians in agricultural landscapes using environmental DNA reveals the importance of wetland condition. Environ Toxicol Chem 38:2750‐2763. https://doi.org/10.1002/etc.4598

Villeneuve DL, Coady K, Escher BI, Mihaich E, Murphy CA, Schlekat T, Garcia‐Reyero N. 2019. High‐throughput screening and environmental risk assessment: State of the science and emerging applications. Environ Toxicol Chem 38:12–26. https://doi.org/10.1002/etc.4315

Morris JM, Brinkman SF, Takeshita R, McFadden AK, Carney MW, Lipton J. 2019. Copper toxicity in Bristol Bay headwaters: Part 2—Olfactory inhibition in low‐hardness water. Environ Toxicol Chem 38:198–209. https://doi.org/10.1002/etc.4295

Maloney EM. 2019. How do we take the pulse of an aquatic ecosystem? Current and historical approaches to measuring ecosystem integrity. Environ Toxicol Chem 38:289–301. https://doi.org/10.1002/etc.4308

Ridošková A, Pelfrêne A, Douay F, Pelcová P, Smolíková V, Adam V. 2019. Bioavailability of mercury in contaminated soils assessed by the diffusive gradient in thin film technique in relation to uptake by Miscanthus × giganteus. Environ Toxicol Chem 38:321–328. https://doi.org/10.1002/etc.4318

Boone KS, Di Toro DM. 2019. Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature‐weighted k‐nearest neighbors classification. Environ Toxicol Chem 38:375–386. https://doi.org/10.1002/etc.4324

Adam V, Yang T, Nowack B. 2019. Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters. Environ Toxicol Chem 38:436–447. https://doi.org/10.1002/etc.4323

Fox JF, Denton DL, Diamond J, Stuber R, 2019. Comparison of false‐positive rates of 2 hypothesis‐test approaches in relation to laboratory toxicity test performance. Environ Toxicol Chem 38:511–523. https://doi.org/10.1002/etc.4347

Saunders LJ, Fontanay S, Nichols JW, Gobas FAPC. 2019. Concentration dependence of in vitro biotransformation rates of hydrophobic organic sunscreen agents in rainbow trout S9 fractions: Implications for bioaccumulation assessment. Environ Toxicol Chem 38:548–560. https://doi.org/10.1002/etc.4342

Jasperse L, Levin M, Rogers K, Perkins C, Bosker T, Griffitt RJ, Sepúlveda MS, De Guise S. 2019. Transgenerational effects of polycyclic aromatic hydrocarbon exposure on sheepshead minnows (Cyprinodon variegatus ). Environ Toxicol Chem 38:638–649. https://doi.org/10.1002/etc.4340

Mount DR, Erickson RJ, Forsman BB, Highland TL, Hockett JR, Hoff DJ, Jenson CT, Norberg‐King TJ. 2019. Chronic toxicity of major ion salts and their mixtures to Ceriodaphnia dubia . Environ Toxicol Chem 38:769–783. https://doi.org/10.1002/etc.4346

Giroux M, Gan J, Schlenk D. 2019. The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon. Environ Toxicol Chem 38:852–861. https://doi.org/10.1002/etc.4372

Jegede OO, Hale BA, Siciliano SD. 2019. Multigenerational exposure of populations of Oppia nitens to zinc under pulse and continuous exposure scenarios. Environ Toxicol Chem 38:896–904. https://doi.org/10.1002/etc.4369

Rashid A, Wang Y, Li Y, Yu C‐P, Sun Q. 2019. Simultaneous analysis of multiclass contaminants of emerging concern in sediments by liquid chromatography with tandem quadrupole mass spectrometry. Environ Toxicol Chem 38:1409–1422. https://doi.org/10.1002/etc.4450

Dreier DA, Mello DF, Meyer JN, Martyniuk CJ. 2019. Linking mitochondrial dysfunction to organismal and population health in the context of environmental pollutants: Progress and considerations for mitochondrial adverse outcome pathways. Environ Toxicol Chem 38:1625–1634. https://doi.org/10.1002/etc.4453

Seidensticker S, Zarfl C, Cirpka OA, Grathwohl P. 2019. Microplastic–contaminant interactions: Influence of nonlinearity and coupled mass transfer. Environ Toxicol Chem 38:1635–1644. https://doi.org/10.1002/etc.4447

Rodriguez PH, Arbildua JJ, Villavicencio G, Urrestarazu P, Opazo M, Cardwell AS, Stubblefield W, Nordheim E, Adams W. 2019. Determination of bioavailable aluminum in natural waters in the presence of suspended solids. Environ Toxicol Chem 38:1668–1681. https://doi.org/10.1002/etc.4448

Feehan JF, Monaghan J, Gill CG, Krogh ET. 2019. Direct measurement of acid dissociation constants of trace organic compounds at nanomolar levels in aqueous solution by condensed phase–Membrane introduction mass spectrometry. Environ Toxicol Chem 38:1879–1889. https://doi.org/10.1002/etc.4519

Costello DM, Harrison AM, Hammerschmidt CR, Mendonca RM, Burton GA, Jr. 2019. Hitting reset on sediment toxicity: Sediment homogenization alters the toxicity of metal‐amended sediments. Environ Toxicol Chem 38:1995–2007. https://doi.org/10.1002/etc.4512

Gidley PT, Kennedy AJ, Lotufo GR, Wooley AH, Melby NL, Ghosh U, Burgess RM, Mayer P, Fernandez LA, Schmidt SN, Wang AP, Bridges TS, Ruiz CE. 2019. Bioaccumulation in functionally different species: Ongoing input of PCBs with sediment deposition to activated carbon remediated bed sediments. Environ Toxicol Chem 38:2326–2336. https://doi.org/10.1002/etc.4526

Lotufo GR, George RD, Belden JB, Woodley C, Smith DL, Rosen G. 2019. Release of munitions constituents in aquatic environments under realistic scenarios and validation of polar organic chemical integrative samplers for monitoring. Environ Toxicol Chem 38:2383–2391. https://doi.org/10.1002/etc.4553

Li J, Mcleod AM, Bhavsar SP, Bohr J, Grgicak‐Mannion A, Drouillard K. 2019. Use of a food web bioaccumulation model to uncover spatially integrated polychlorinated biphenyl exposures in Detroit River sport fish. Environ Toxicol Chem 38:2771–2784. https://doi.org/10.1002/etc.4569

Dean KM, Marcell AM, Baltos LD, Carro T, Bohannon MEB, Ottinger MA. 2019. Comparative lethality of in ovo exposure to PCB 126, PCB 77, and 2 environmentally relevant PCB mixtures in Japanese quail (Coturnix japonica ). Environ Toxicol Chem 38:2637–2650. https://doi.org/10.1002/etc.4578



中文翻译:

ET&C 2019年最佳论文。

2019年最佳论文奖获奖者:

使用环境DNA检测农业景观中的两栖动物揭示了湿地条件的重要性

加布里埃尔·鲁索(Gabrielle E. Ruso),克里斯蒂·莫里西(Christy A.Morrissey),娜塔莎·霍根(Natacha S.Hogan),克劳迪娅·希迪(Claudia Sheedy),梅兰妮·J·加兰特(Melanie J.

https://doi.org/10.1002/etc.4598

当代生态毒理学面临的最大挑战是如何可靠地评估化学污染物对生态系统的影响,并将其与许多其他环境因素区分开来。湿地生态系统面临着多种物理,生物和化学压力源,这些压力源可能直接或间接地影响野生动植物的个人健康,人口,社区,生态功能和服务水平。生物监测技术和效果分析工具的最新发展为该领域生物群落的健康状况提供了直接证据,可以克服依靠实验室中的模拟测试或数学模型评估生态危害和风险的局限性。Ruso等。描述了在北美北部大平原的草原坑洼地区对基于环境DNA(eDNA)的野生生物生物监测进行的彻底而创新的研究。将eDNA的使用与传统方法(目视相遇调查[VES]和dip浸网调查)进行了比较,以确定在这些湿地生态系统中是否存在木蛙。使用增强回归树(BRT)模型,他们的结果清楚地证明了多种农业因素影响湿地栖息地中木蛙的存在的相对重要性。

参考

Ruso GE,Morrissey CA,Hogan NS,Sheedy C,Gallant MJ,Jardine TD。2019。使用环境DNA检测农业景观中的两栖动物揭示了湿地条件的重要性。环境毒性化学38:2750-2763。

张晓伟

南京大学环境学院,江苏南京

图片

最佳论文奖Gabrielle E. Ruso。

特殊论文[格式与《焦点文章》的H1相同]

图片

高通量筛选和环境风险评估:科学和新兴应用程序的状态

DL Villeneuve,K.Coady,BI Escher,E.Mihaich,CA Murphy,T.Schlekat和N.Garcia-Reyero

https://doi.org/10.1002/etc.4315

图片

目标位点模型:使用亚伯拉罕参数和特征加权k近邻分类法预测作用方式和水生生物急性毒性

KS Boone和DM Di Toro

https://doi.org/10.1002/etc.4324

图片

进行微塑料的生态毒理学风险评估:比较淡水中可用的危害和暴露数据

V.亚当,杨扬和B.诺瓦克

https://doi.org/10.1002/etc.4323

图片

联苯菊酯和温度对少年chinook鲑鱼内分泌学的影响

M. Giroux,J。Gan和D.Schlenk

https://doi.org/10.1002/etc.4372

图片

在环境污染物的背景下将线粒体功能障碍与机体和人群健康联系起来:线粒体不良后果的进展和考虑因素

DA Dreier,DF Mello,JN Meyer和CJ Martyniuk

https://doi.org/10.1002/etc.4453

图片

微塑性-污染物相互作用:非线性和耦合传质的影响

S.Seidensticker,C.Zar fl,OA Cirpka和P.Grathwohl

https://doi.org/10.1002/etc.4447

图片

重击沉积物毒性:沉积物均质化改变了金属修正沉积物的毒性

DM Costello,AM Harrison,CR Hammerschmidt,RM Mendonca和GA Burton Jr.

https://doi.org/10.1002/etc.4512

图片

凝聚相-膜引入质谱法直接测量水溶液中纳摩尔级痕量有机化合物的酸解离常数

JF Feehan,J.Monaghan,CG Gill和ET Krogh

https://doi.org/10.1002/etc.4519

图片

功能不同物种的生物蓄积:持续不断地将具有沉积物沉积物的多氯联苯输入活性炭修复的床沉积物中

PT Gidley,AJ Kennedy,GR Lotufo,AH Wooley,NL Melby,U.Ghosh,RM Burgess,P.Mayer,LA Fernandez,SN Schmidt,AP Wang,TS Bridges和CE Ruiz

https://doi.org/10.1002/etc.4526

图片

利用食物网生物蓄积模型揭示底特律河运动鱼中空间整合的多氯联苯暴露量

J.Li,AM Mcleod,SP Bhavsar,J.Bohr,A.Grgicak-Mannion和K.Drouillard

https://doi.org/10.1002/etc.4569

提名论文的完整清单

Ruso GE,Morrissey CA,Hogan NS,Sheedy C,Gallant MJ,Jardine TD。2019。使用环境DNA检测农业景观中的两栖动物揭示了湿地条件的重要性。环境毒性化学38:2750-2763。https://doi.org/10.1002/etc.4598

Villeneuve DL,Coady K,Escher BI,Mihaich E,Murphy CA,Schlekat T,Garcia-Reyero N.2019年。高通量筛选和环境风险评估:科学和新兴应用的现状。环境毒性化学38:12–26。https://doi.org/10.1002/etc.4315

Morris JM,Brinkman SF,Takeshita R,McFadden AK,Carney MW,Lipton J.2019年。《布里斯托尔湾上游水源中的铜毒性:第2部分—低硬度水中的嗅觉抑制》。环境毒性化学38:198–209。https://doi.org/10.1002/etc.4295

马洛尼EM。2019。我们如何把握水生生态系统的脉搏?当前和历史上衡量生态系统完整性的方法。Environ Toxicol Chem 38:289-301。https://doi.org/10.1002/etc.4308

RidoškováA,PelfrêneA,Douay F,PelcováP,SmolíkováV,Adam V.2019年。通过薄膜技术中的扩散梯度评估的污染土壤中汞的生物利用度与芒草×巨嘴鸟的吸收有关环境毒性化学38:321–328。https://doi.org/10.1002/etc.4318

Boone KS,Di Toro DM。2019。目标地点模型:使用亚伯拉罕参数和特征加权k近邻分类法预测作用模式和水生生物急性毒性。环境毒性化学38:375–386。https://doi.org/10.1002/etc.4324

Adam V,Yang T,Nowack B.2019年。迈向微塑料的生态毒理学风险评估:淡水中可用危害和暴露数据的比较。环境毒性化学38:436–447。https://doi.org/10.1002/etc.4323

Fox JF,Denton DL,Diamond J,Stuber R,2019年。两种假设检验方法的假阳性率与实验室毒性测试性能的比较。环境毒性化学38:511–523。https://doi.org/10.1002/etc.4347

Saunders LJ,Fontanay S,Nichols JW,Gobas FAPC。2019.虹鳟S9馏分中疏水性有机防晒剂的体外生物转化率的浓度依赖性:对生物蓄积评估的影响。Environ Toxicol Chem 38:548-560。https://doi.org/10.1002/etc.4342

Jasperse L,Levin M,Rogers K,Perkins C,Bosker T,Griffitt RJ,SepúlvedaMS,De Guise S.2019年。多环芳烃暴露对小头min鱼(Cyprinodon variegatus)的传代影响。环境毒性化学38:638–649。https://doi.org/10.1002/etc.4340

Mount DR,Erickson RJ,Forsman BB,Highland TL,Hockett JR,Hoff DJ,Jenson CT,Norberg-King TJ。2019.主要离子盐及其混合物对杜鹃花的慢性毒性。Environ Toxicol Chem 38:769-783。https://doi.org/10.1002/etc.4346

Giroux M,Gan J,Schlenk D.2019。联苯菊酯和温度对奇努克鲑鱼内分泌学的影响。环境毒性化学38:852-861。https://doi.org/10.1002/etc.4372

Jegede OO,Hale BA,Siciliano SD。2019年。在脉冲和连续暴露情景下,奥平亚鸟种群对锌的多代暴露。环境毒性化学38:896-904。https://doi.org/10.1002/etc.4369

Rashid A,Wang Y,Li Y,Yu CP,Sun Q.2019。通过串联四极杆质谱联用液相色谱法同时分析沉积物中新出现的多类污染物。环境毒性化学38:1409–1422。https://doi.org/10.1002/etc.4450

Dreier DA,Mello DF,Meyer JN,Martyniuk CJ。2019。在环境污染物的背景下,将线粒体功能障碍与机体和人群健康联系起来:线粒体不良结局途径的进展和考虑。环境毒性化学38:1625-1634。https://doi.org/10.1002/etc.4453

Seidensticker S,Zarfl C,Cirpka OA,Grathwohl P.,2019年。《塑料与污染物的相互作用:非线性和传质耦合的影响》。环境毒性化学38:1635–1644。https://doi.org/10.1002/etc.4447

Rodriguez PH,Arbildua JJ,Villavicencio G,Urrestarazu P,Opazo M,Cardwell AS,Stubblefield W,Nordheim E,Adams W.2019。在存在悬浮固体的情况下,在天然水中测定可生物利用的铝。环境毒性化学38:1668–1681。https://doi.org/10.1002/etc.4448

Feehan JF,Monaghan J,Gill CG,Krogh ET。2019。通过凝聚相-膜引入质谱法直接测量水溶液中纳摩尔水平的微量有机化合物的酸解离常数。环境毒性化学38:1879-1889。https://doi.org/10.1002/etc.4519

Costello DM,Harrison AM,Hammerschmidt CR,Mendonca RM,Burton GA,Jr.2019年。沉积物毒性重置:沉积物均质化改变了金属改良沉积物的毒性。环境毒性化学38:1995-2007。https://doi.org/10.1002/etc.4512

Gidley PT,Kennedy AJ,Lotufo GR,Wooley AH,Melby NL,Ghosh U,Burgess RM,Mayer P,Fernandez LA,Schmidt SN,Wang AP,Bridges TS,Ruiz CE。2019。功能不同物种的生物蓄积:不断进行的多氯联苯输入以及沉积物沉积到活性炭修复的床沉积物中。环境毒性化学38:2326-2336。https://doi.org/10.1002/etc.4526

Lotufo GR,George RD,Belden JB,Woodley C,Smith DL,Rosen G.2019年。在现实情况下在水生环境中释放弹药成分,并验证用于监测的极性有机化学综合采样器。环境毒性化学38:2383–2391。https://doi.org/10.1002/etc.4553

Li J,Mcleod AM,Bhavsar SP,Bohr J,Grgicak-Mannion A,Drouillard K.,2019年。利用食物网生物蓄积模型揭示底特律河运动鱼中空间综合的多氯联苯暴露量。环境毒性化学38:2771-2784。https://doi.org/10.1002/etc.4569

院长KM,马塞尔(Marcell),巴尔托斯(Baltos)LD,卡罗(Carro),博汉农(Bohannon)ME,马萨诸塞州(Ottinger)2019。日本鹌鹑(Coturnix japonica)中PCB 126,PCB 77和2种与环境相关的PCB混合物对卵内毒的杀伤力比较。环境毒性化学38:2637-2650。https://doi.org/10.1002/etc.4578

更新日期:2020-06-25
down
wechat
bug