当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid FeNiOOH/α-Fe2O3/Graphene Photoelectrodes with Advanced Water Oxidation Performance.
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-06-25 , DOI: 10.1002/adfm.202002124
Attila Kormányos 1 , Egon Kecsenovity 1 , Alireza Honarfar 2 , Tönu Pullerits 2 , Csaba Janáky 1, 3
Affiliation  

In this study, the photoelectrochemical behavior of electrodeposited FeNiOOH/Fe2O3/graphene nanohybrid electrodes is investigated, which has precisely controlled structure and composition. The photoelectrode assembly is designed in a bioinspired manner where each component has its own function: Fe2O3 is responsible for the absorption of light, the graphene framework for proper charge carrier transport, while the FeNiOOH overlayer for facile water oxidation. The effect of each component on the photoelectrochemical behavior is studied by linear sweep photovoltammetry, incident photon‐to‐charge carrier conversion efficiency measurements, and long‐term photoelectrolysis. 2.6 times higher photocurrents are obtained for the best‐performing FeNiOOH/Fe2O3/graphene system compared to its pristine Fe2O3 counterpart. Transient absorption spectroscopy measurements reveal an increased hole‐lifetime in the case of the Fe2O3/graphene samples. Long‐term photoelectrolysis measurements in combination with Raman spectroscopy, however, prove that the underlying nanocarbon framework is corroded by the photogenerated holes. This issue is tackled by the electrodeposition of a thin FeNiOOH overlayer, which rapidly accepts the photogenerated holes from Fe2O3, thus eliminating the pathway leading to the corrosion of graphene.

中文翻译:

具有先进水氧化性能的混合 FeNiOOH/α-Fe2O3/石墨烯光电极。

在本研究中,研究了电沉积FeNiOOH/Fe 2 O 3 /石墨烯纳米杂化电极的光电化学行为,该电极具有精确控制的结构和成分。光电极组件以仿生方式设计,每个组件都有自己的功能:Fe 2 O 3负责吸收光,石墨烯框架负责适当的载流子传输,而 FeNiOOH 覆盖层负责轻松水氧化。通过线性扫描光电伏安法、入射光子到电荷载流子转换效率测量和长期光电解研究了每种组分对光电化学行为的影响。与原始 Fe 2 O 3对应物相比,性能最佳的 FeNiOOH/Fe 2 O 3 /石墨烯系统获得的光电流高出 2.6 倍。瞬态吸收光谱测量表明 Fe 2 O 3 /石墨烯样品的空穴寿命增加。然而,长期光电解测量与拉曼光谱相结合,证明下面的纳米碳框架被光生空穴腐蚀。这个问题可以通过电沉积一层薄薄​​的 FeNiOOH 覆盖层来解决,该覆盖层可以快速接受 Fe 2 O 3的光生空穴,从而消除导致石墨烯腐蚀的途径。
更新日期:2020-08-03
down
wechat
bug