当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting Ultrafast Lithium Storage Capability of Hierarchical Core/Shell Constructed Carbon Nanofiber/3D Interconnected Hybrid Network with Nanocarbon and FTO Nanoparticle Heterostructures
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-06-25 , DOI: 10.1002/adfm.202001863
Bon‐Ryul Koo 1 , Ki‐Wook Sung 2 , Hyo‐Jin Ahn 1, 2
Affiliation  

The aim of the study involves accelerating ultrafast electrochemical behavior of lithium‐ion batteries (LIBs) by proposing hierarchical core/shell heterostructure of carbon nanofiber (CNF)/3D interconnected hybrid network with nanocarbon and fluorine‐doped tin oxide (FTO) nanoparticles (NPs) via a one‐pot process of horizontal ultrasonic spray pyrolysis deposition. This is constructed via a pyrolysis reaction of ketjen black forming 3D interconnected FTO NPs covered with nanocarbon network on CNF. It offers fast electrical conductivity to the overall electrode with improved Li ion diffusion due to decreased size effect and relaxed structural variation of FTO NPs via nanocarbon network, leading to high discharge capacity (868.7 mAh g−1 after 100 cycles) at 100 mA g−1 and superior rate capability. Nevertheless, at extremely high current density (2000 mA g−1), significant ultrafast electrochemical performances with reversible discharge capacity (444.4 mAh g−1) and long‐term cycling retention (89.9% after 500 cycles) are noted. This is attributed to the novel effects of 3D interconnected hybrid network accelerating receptive capacity of Li ions into the FTO NPs via nanocarbon network, delivery of formed Li ions and electrons by hybrid network with FTO NP and nanocarbon, and prevention of FTO NP pulverization from CNFs via nanocarbon network. Therefore, the proposed heterostructure holds significant promise for effective development of ultrafast anode material for enhancing the practical applications of LIBs.

中文翻译:

增强具有纳米碳和FTO纳米异质结构的分层核/壳结构碳纳米纤维/ 3D互连混合网络的超快锂存储能力。

该研究的目的在于通过提出碳纳米纤维(CNF)/ 3D互连杂化网络与纳米碳和掺氟氧化锡(FTO)纳米粒子(NPs)的分层核/壳异质结构,来加速锂离子电池(LIB)的超快电化学行为。 )通过一锅法进行水平超声喷雾热解沉积。这是通过科琴黑形成的3D互连FTO NP(在CNF上覆盖纳米碳网络)的热解反应构建的。它提供了快速的电导率以具有改善的Li离子扩散的整体电极由于FTO NP的减小尺寸效应和松弛结构变异通过纳米碳网络,从而导致高的放电容量(毫安868.7克-1 100次循环后)在100mA克- 1个和卓越的计费能力。然而,在极高的电流密度(2000 mA g -1)下,仍可观察到显着的超快电化学性能,具有可逆的放电容量(444.4 mAh g -1)和长期循环保持率(500次循环后为89.9%)。这归因于3D互连混合网络通过纳米碳网络加速锂离子对FTO NPs的接受能力,通过与FTO NP和纳米碳的混合网络输送形成的锂离子和电子以及防止CNF粉碎FTO NP的粉尘所带来的新颖效果。通过纳米碳网络。因此,提出的异质结构为有效开发超快阳极材料以增强LIB的实际应用具有重大前景。
更新日期:2020-08-08
down
wechat
bug