当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance analysis and multi-objective optimization of an integrated gas turbine/supercritical CO2 recompression/transcritial CO2 cogeneration system using liquefied natural gas cold energy
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.enconman.2020.113136
Ruizhi Su , Zeting Yu , Lei Xia , Jianan Sun

Abstract A novel power/cooling cogeneration system integrated with a gas turbine, a supercritical CO2 recompression power system (SCRPC) and a transcritical CO2 power system (TCPC) using liquefied natural gas (LNG) cold energy is proposed and investigated. This new combined system can improve the electrical capacity of gas turbine, and it can maximize the electrical output under different gas turbine load conditions by adjusting the split ratio. A steady-state mathematical model is developed to further understand the performance of the proposed system. It is shown that under the given conditions the combined thermal efficiency and the combined exergy efficiency are 52.94% and 30.27%, respectively. And the exergy analysis shows that the exergy destruction mainly occurs in the combustor, followed by condenser and NG terminal, respectively. Parametric study shows that the engine load conditions, the turbine I inlet temperature, the SCRPC and TCPC highest pressures and the effectiveness of HTR, LTR and regenerator have significant effects on the net work output, the cooling capacity, the combined thermal and exergy efficiencics, and the capital investment cost. Furthermore, multi-objective optimizations considering both thermodynamic and economic aspects are carried out to obtain the Pareto frontier solutions for different multi-objectives, and the optimal design condition is found out by means of the TOPSIS method based on entropy weight. These findings could be helpful in improving the utilization rate of the gas turbine exhaust waste heat and thus boost the system efficiency.

中文翻译:

液化天然气冷能一体化燃气轮机/超临界CO2再压缩/跨临界CO2热电联产系统性能分析及多目标优化

摘要 提出并研究了一种集成燃气轮机、超临界 CO2 再压缩动力系统 (SCRPC) 和使用液化天然气 (LNG) 冷能的跨临界 CO2 动力系统 (TCPC) 的新型动力/冷却热电联产系统。这种新的组合系统可以提高燃气轮机的电容量,并且可以通过调节分流比在不同的燃气轮机负载条件下最大化电力输出。开发了稳态数学模型以进一步了解所提出系统的性能。结果表明,在给定条件下,组合热效率和组合火用效率分别为52.94%和30.27%。火用分析表明,火用破坏主要发生在燃烧室,其次是冷凝器和天然气终端。参数研究表明,发动机负荷条件、涡轮 I 入口温度、SCRPC 和 TCPC 最高压力以及 HTR、LTR 和再生器的有效性对净功输出、冷却能力、热和火用联合效率有显着影响,和资本投资成本。进而通过综合考虑热力学和经济两方面的多目标优化,得到不同多目标的Pareto前沿解,并通过基于熵权的TOPSIS方法找出最优设计条件。这些发现有助于提高燃气轮机废热的利用率,从而提高系统效率。SCRPC 和 TCPC 最高压力以及 HTR、LTR 和再生器的效率对净功输出、冷却能力、热能和火用联合效率以及资本投资成本有显着影响。进而通过综合考虑热力学和经济两方面的多目标优化,得到不同多目标的帕累托前沿解,并通过基于熵权的TOPSIS方法找出最优设计条件。这些发现有助于提高燃气轮机废热的利用率,从而提高系统效率。SCRPC 和 TCPC 最高压力以及 HTR、LTR 和再生器的效率对净功输出、冷却能力、热能和火用联合效率以及资本投资成本有显着影响。进而通过综合考虑热力学和经济两方面的多目标优化,得到不同多目标的Pareto前沿解,并通过基于熵权的TOPSIS方法找出最优设计条件。这些发现有助于提高燃气轮机废热的利用率,从而提高系统效率。和资本投资成本。进而通过综合考虑热力学和经济两方面的多目标优化,得到不同多目标的帕累托前沿解,并通过基于熵权的TOPSIS方法找出最优设计条件。这些发现有助于提高燃气轮机废热的利用率,从而提高系统效率。和资本投资成本。进而通过综合考虑热力学和经济两方面的多目标优化,得到不同多目标的帕累托前沿解,并通过基于熵权的TOPSIS方法找出最优设计条件。这些发现有助于提高燃气轮机废热的利用率,从而提高系统效率。
更新日期:2020-09-01
down
wechat
bug