当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile renewable synthesis of nitrogen/oxygen co-doped graphene-like carbon nanocages as general lithium-ion and potassium-ion batteries anode
Carbon ( IF 10.9 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.carbon.2020.06.046
Yuanhe Sun , Daming Zhu , Zhaofeng Liang , Yuanxin Zhao , Weifeng Tian , Xiaochuan Ren , Juan Wang , Xiaoyan Li , Yi Gao , Wen Wen , Yaobo Huang , Xiaolong Li , Renzhong Tai

Abstract Environmentally-friendly carbon-based materials possess the potential applications as general anode for alkali-ion batteries. However, the existing carbon-based materials cannot satisfy the increasing demand for high energy density and need further active exploration. Herein, nitrogen/oxygen co-doped graphene-like carbon nanocages (NOGCN) is synthesized from biomass cytidine on hydro-soluble sodium chloride nanocrystals by a one-step method as a general lithium and potassium-ion batteries anode. All reactants are completely renewable and readily available. The nitrogen/oxygen-doping, large interlayer spacing and robust self-supporting nanocage architecture greatly favour electrolyte penetration and improve the kinetics for ion and electron transport, resulting in extraordinary electrochemical performance. The synthesized NOGCN electrodes exhibit a high lithiation storage capacity of 620 mA h g−1 over 500 cycles at 500 mA g−1, with continuously magnifying capacity. Moreover, the impressive reversible potassiation capacity (355 mA h g−1 at 200 mA g−1) and rate capability (114 mA h g−1 at 1000 mA g−1) were achieved despite the large-sized potassium ions. Kinetic analysis and density functional theory calculations elaborately illustrate the Li/K-absorption properties of the N/O-doped graphene-like structure, further demonstrating the chemical affinity and superiority in Li/K storage. This study provides a facile and completely renewable method to prepare promising general anode material for alkali-ion batteries.

中文翻译:

氮/氧共掺杂类石墨烯碳纳米笼的简便可再生合成作为通用锂离子和钾离子电池阳极

摘要 环保碳基材料作为碱离子电池通用负极具有潜在的应用前景。然而,现有的碳基材料无法满足日益增长的高能量密度需求,需要进一步积极探索。在此,氮/氧共掺杂类石墨烯碳纳米笼(NOGCN)是由生物质胞苷在水溶性氯化钠纳米晶体上通过一步法合成的,作为一般的锂和钾离子电池阳极。所有反应物都是完全可再生的并且容易获得。氮/氧掺杂、大的层间距和坚固的自支撑纳米笼结构极大地有利于电解质渗透并改善离子和电子传输的动力学,从而产生非凡的电化学性能。合成的 NOGCN 电极在 500 mA g-1 下在 500 次循环中表现出 620 mA h g-1 的高锂化存储容量,并具有不断放大的容量。此外,尽管存在大尺寸的钾离子,但仍实现了令人印象深刻的可逆钾化能力(200 mA g-1 时为 355 mA h g-1)和倍率能力(114 mA h g-1 时为 1000 mA g-1)。动力学分析和密度泛函理论计算详细说明了 N/O 掺杂的类石墨烯结构的 Li/K 吸收特性,进一步证明了 Li/K 存储的化学亲和力和优越性。该研究为制备有前景的碱离子电池通用负极材料提供了一种简便且完全可再生的方法。尽管存在大尺寸的钾离子,但仍实现了令人印象深刻的可逆钾化能力(200 mA g-1 时为 355 mAh g-1)和倍率能力(114 mA h g-1 时为 1000 mA g-1)。动力学分析和密度泛函理论计算详细说明了 N/O 掺杂的类石墨烯结构的 Li/K 吸收特性,进一步证明了 Li/K 存储的化学亲和力和优越性。该研究为制备有前景的碱离子电池通用负极材料提供了一种简便且完全可再生的方法。尽管存在大尺寸的钾离子,但仍实现了令人印象深刻的可逆钾化能力(200 mA g-1 时为 355 mAh g-1)和倍率能力(114 mA h g-1 时为 1000 mA g-1)。动力学分析和密度泛函理论计算详细说明了 N/O 掺杂的类石墨烯结构的 Li/K 吸收特性,进一步证明了 Li/K 存储的化学亲和力和优越性。该研究为制备有前景的碱离子电池通用负极材料提供了一种简便且完全可再生的方法。动力学分析和密度泛函理论计算详细说明了 N/O 掺杂的类石墨烯结构的 Li/K 吸收特性,进一步证明了 Li/K 存储的化学亲和力和优越性。该研究为制备有前景的碱离子电池通用负极材料提供了一种简便且完全可再生的方法。动力学分析和密度泛函理论计算详细说明了 N/O 掺杂的类石墨烯结构的 Li/K 吸收特性,进一步证明了 Li/K 存储的化学亲和力和优越性。该研究为制备有前景的碱离子电池通用负极材料提供了一种简便且完全可再生的方法。
更新日期:2020-10-01
down
wechat
bug