当前位置: X-MOL 学术Adv. Civ. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physics and Dynamics Characteristics and Energy Analysis of Freeze-Thaw Limestone
Advances in Civil Engineering ( IF 1.5 ) Pub Date : 2020-06-24 , DOI: 10.1155/2020/8820172
Qi Ping 1, 2, 3 , Hongjian Sun 1, 2, 3 , Chuanliang Zhang 1, 2, 3 , Xin Zhou 2, 3
Affiliation  

In order to study the physical and dynamic properties of rock after damage, an open-type saturated water freeze-thaw test at ±20°C was carried out on the limestone specimen, the size, quality, and longitudinal wave velocity with measured after freeze-thaw cycles for 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 times, and the SHPB test device was used to carry out the impact compression test with eight kinds of loading rate. This text analyzes the damage evolution characteristics on the physical properties of limestone of cycle times of freeze-thaw and discusses the dynamic compression mechanical characteristics and energy dissipation law of limestone specimens after freeze-thaw cycles. The test results show that the mass and longitudinal wave velocity of the specimen decreased and the volume and density increased. The damage factors have the quadratic function positive correlation with the cycle time of freeze-thaw. Moreover, the dynamic compression stress-strain curves of the specimens under different loading rates are similar in shape, and the curve shows an upward trend with increasing loading speed. In addition, with the loading rate increasing, the dynamic compressive strength and dynamic elastic modulus of the specimen increased and the dynamic strain decreased. In the SHPB test, the reflected energy, transmitted energy, and absorbed energy all increased linearly with incident energy. The dynamic compressive strength and absorbed energy increase as a power function, and the strain rate and absorbed energy increase as a quadratic function.

中文翻译:

冻融石灰石的物理动力学特征及能量分析

为了研究损伤后岩石的物理和动力特性,对石灰石试样进行了±20°C的开放式饱和水冻融试验,测量了冻融后的尺寸,质量和纵向波速。 -解冻循环分别为0、10、20、30、40、50、60、70、80、90和100次,并使用SHPB测试装置以八种加载速率进行冲击压缩测试。本文分析了冻融循环时间对石灰石物理性能的损伤演化特征,探讨了冻融循环后石灰石试样的动态压缩力学特征和能量耗散规律。试验结果表明,试样的质量和纵向波速下降,体积和密度增大。损伤因子与冻融循环时间呈二次函数正相关。此外,在不同加载速率下,试样的动态压缩应力-应变曲线形状相似,并且随着加载速度的增加,该曲线呈上升趋势。此外,随着加载速率的增加,样品的动态抗压强度和动态弹性模量增加,动态应变降低。在SHPB测试中,反射能量,透射能量和吸收能量都随入射能量线性增加。动态抗压强度和吸收能作为幂函数增加,应变率和吸收能作为二次函数增加。试样在不同加载速率下的动态压缩应力-应变曲线形状相似,且随着加载速度的增加呈现出上升趋势。此外,随着加载速率的增加,样品的动态抗压强度和动态弹性模量增加,动态应变降低。在SHPB测试中,反射能量,透射能量和吸收能量都随入射能量线性增加。动态抗压强度和吸收能作为幂函数增加,应变率和吸收能作为二次函数增加。试样在不同加载速率下的动态压缩应力-应变曲线形状相似,且随着加载速度的增加呈现出上升趋势。此外,随着加载速率的增加,样品的动态抗压强度和动态弹性模量增加,动态应变降低。在SHPB测试中,反射能量,透射能量和吸收能量都随入射能量线性增加。动态抗压强度和吸收能作为幂函数增加,应变率和吸收能作为二次函数增加。试样的动态抗压强度和动态弹性模量增加,动态应变减小。在SHPB测试中,反射能量,透射能量和吸收能量都随入射能量线性增加。动态抗压强度和吸收能作为幂函数增加,应变率和吸收能作为二次函数增加。试样的动态抗压强度和动态弹性模量增加,动态应变减小。在SHPB测试中,反射能量,透射能量和吸收能量都随入射能量线性增加。动态抗压强度和吸收能作为幂函数增加,应变率和吸收能作为二次函数增加。
更新日期:2020-06-24
down
wechat
bug