当前位置: X-MOL 学术ACS Mater. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metastable Chloride Solid Electrolyte with High Formability for Rechargeable All-Solid-State Lithium Metal Batteries
ACS Materials Letters ( IF 9.6 ) Pub Date : 2020-06-23 , DOI: 10.1021/acsmaterialslett.0c00127
Naoto Tanibata 1, 2 , Shuta Takimoto 1 , Koki Nakano 1 , Hayami Takeda 1, 2 , Masanobu Nakayama 1, 2, 3 , Hirofumi Sumi 4
Affiliation  

Dense solid electrolytes in all-solid-state Li batteries are expected to suppress Li dendrite phenomena that prevent the application of high-energy-density Li metal electrodes. However, voids and cracks in sintered electrolytes still permit short-circuiting due to Li dendrites. This study aimed to investigate solid electrolytes with high formability in which green compacts can prevent Li dendrites. Li+ ion migration energies, bulk moduli, and energies above the hull were comprehensively investigated using first-principles and classical force field calculations as the indicators for ionic conductivity, formability, and thermodynamic stability. The 231 compounds containing Li and Cl listed in the Materials Project database were studied due to their high polarizability and weak Coulombic interaction with Li+ ions. Among them, monoclinic LiAlCl4 (LAC, S.G.: P121/c1) was focused on, owing to its low values of all three indicators. A mechanochemical synthesis was attempted to prepare the metastable phase, where Li ions occupy the interstitial sites, not just the original sites, because the computation for the migration energy suggested conductive pathways between the original Li sites. XRD and 7Li-MAS NMR measurements indicated that the mechanochemically synthesized LAC possessed a monoclinic host structure, while 2.5% Li occupied interstitial tetrahedral sites. Impedance measurements showed that the LAC green compacts exhibited an ionic conductivity of 2.1 × 10–5 S cm–1, 20 times higher than the conventional solid-state synthesized LAC at room temperature. The conductivity was more than one order of magnitude higher than that of garnet-type Li6.6La3Zr1.6Ta0.4O12 (LLZT), which has been attractive for the application of the sintered body for Li metal electrodes. The SEM observations and distribution of relaxation times analysis indicated that dense LAC green compacts with large necking between the particles contributed minimal grain-boundary resistance (7.5%) to the total resistance, while the LLZT green compacts contributed almost completely (99%). Li metal symmetric cells using the LAC pellet showed good cycle performance without short-circuiting and an overvoltage increase for 70 cycles at a current density of 0.1 mA cm–2, while short circuiting occurred at the 1st cycle in the LLZT cells.

中文翻译:

具有高可成型性的亚稳态氯化物固体电解质,可充电的全固态锂金属电池

期望全固态锂电池中的致密固体电解质能够抑制锂枝晶现象,该现象阻碍了高能量密度锂金属电极的应用。然而,由于锂枝晶,烧结电解质中的空隙和裂纹仍然允许短路。这项研究旨在研究具有高成形性的固体电解质,其中生坯可以防止锂枝晶。使用第一性原理和经典力场计算作为离子电导率,可成型性和热力学稳定性的指标,对Li +离子迁移能,体积模量和船体上方的能量进行了全面研究。材料项目中列出的231种含Li和Cl的化合物由于其高极化性和与Li +离子的弱库仑相互作用,因此对数据库进行了研究。其中,单斜LiAlCl 4(LAC,SG:P 12 1 / c 1)受到关注,因为这三个指标的值均较低。试图进行机械化学合成以制备亚稳态相,其中锂离子占据间隙位置,而不仅仅是原始位置,因为迁移能的计算表明原始锂位置之间存在导电途径。XRD和7Li-MAS NMR测量表明,机械化学合成的LAC具有单斜晶主体结构,而2.5%Li占据间隙四面体位点。阻抗测量表明,LAC压坯的离子电导率为2.1×10 -5 S cm -1,是室温下传统固态合成LAC的20倍。电导率比石榴石型Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12高一个数量级以上(LLZT),其对于用于锂金属电极的烧结体的应用具有吸引力。SEM观察和弛豫时间分布分析表明,颗粒之间具有较大颈缩的致密LAC压坯对总阻力的贡献最小,仅为7.5%,而LLZT压坯几乎完全贡献(99%)。使用LAC球团的锂金属对称电池在不产生短路的情况下表现出良好的循环性能,并且在电流密度为0.1 mA cm –2的情况下过电压增加了70个循环,而LLZT电池在第一个循环中发生了短路。
更新日期:2020-08-03
down
wechat
bug