当前位置: X-MOL 学术ACS Appl. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optically Readable Waveguide-Integrated Electrochromic Artificial Synaptic Device for Photonic Neuromorphic Systems
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2020-06-24 , DOI: 10.1021/acsaelm.0c00314
Jin Tae Kim 1 , Juhee Song 2 , Chil Seong Ah 2
Affiliation  

Despite advances in numerous artificial synaptic devices, the search for a new functionalized synaptic device remains the subject of rigorous investigation for constructing neuromorphic systems. Optical readout functionality in artificial synapses is interesting as on-chip photonic integration technology could increase bandwidth and signal transmission, stop signal interference, reduce power loss, and provide degrees of freedom that complete the photonic neuromorphic system using light rather than electrons. Here, a waveguide-integrated electrochromic artificial synaptic device in which the electrolyte-gated electrical synaptic signal is read by optical means is demonstrated. The optically readable electrochromic synaptic device successfully imitates essential synaptic functions, such as short- and long-term plasticity, excitatory and inhibitory postsynaptic potentiation, and paired-pulse facilitation. In addition, randomly accessible nonvolatile multilevel optical memories are also demonstrated based on electrolyte ion dynamics that enable electrical switching of the transparency of the electrochromic material in a nonvolatile manner. This optically readable artificial synapse approach based on photonic integration circuit technologies provides insight into an exact reading of the emulation of the biological synapse in an optical manner and is a key step toward the implementation of non-conventional photonic neuromorphic systems with tunable bio-inspired synaptic functions.

中文翻译:

用于光子神经形态系统的光学可读波导集成电致变色人工突触设备

尽管在许多人造突触装置中取得了进步,但是寻找新的功能化突触装置仍然是构建神经形态系统的严格研究的主题。人工突触中的光学读出功能很有趣,因为片上光子集成技术可以增加带宽和信号传输,停止信号干扰,减少功率损耗并提供自由度,从而可以使用光而不是电子来完善光子神经形态系统。在此,对通过光学手段读取电解质门控的突触信号的波导集成电致变色人工突触装置进行说明。光学可读电致变色突触设备成功模仿了必要的突触功能,例如短期和长期可塑性,兴奋性和抑制性突触后增强,以及成对脉冲促进。另外,还基于电解质离子动力学证明了可随机访问的非易失性多层光学存储器,该电解质离子动力学能够以非易失性方式电切换电致变色材料的透明度。这种基于光子集成电路技术的光学可读人工突触方法,可以以光学方式洞悉生物突触的精确读数,并且是实现具有可调式生物启发突触的非常规光子神经形态系统的关键步骤职能。还基于电解质离子动力学证明了可随机访问的非易失性多级光学存储器,该电解质离子动力学能够以非易失性方式电切换电致变色材料的透明度。这种基于光子集成电路技术的光学可读人工突触方法,可以以光学方式洞悉生物突触的精确读数,并且是实现具有可调式生物启发突触的非常规光子神经形态系统的关键步骤职能。还基于电解质离子动力学证明了可随机访问的非易失性多级光学存储器,该电解质离子动力学能够以非易失性方式电切换电致变色材料的透明度。这种基于光子集成电路技术的光学可读人工突触方法,可以以光学方式洞悉生物突触的精确读数,并且是实现具有可调式生物启发突触的非常规光子神经形态系统的关键步骤职能。
更新日期:2020-07-28
down
wechat
bug