当前位置: X-MOL 学术Nucl. Mater. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of the first wall shielding during upward VDE in DEMO
Nuclear Materials and Energy ( IF 2.3 ) Pub Date : 2020-06-24 , DOI: 10.1016/j.nme.2020.100767
Sergey Pestchanyi , Francesco Maviglia

First simulations of the DEMO first wall damage during the upward VDE of 0.6 GJ residual plasma energy in the core have been performed using the TOKES code. The simulations revealed two qualitatively different modes of the hot plasma core cooling. In the first of them, we proposed to call the weak shielding mode, the estimation of tungsten amount, vaporized from the wall during VDE is reduced from 5.7 kg for simulation without the shielding to 5∙10-4 kg, the melted pool depth at the wall surface remains almost the same 158 μm without shielding and 140 μm for the weak shielding; the amounts of melted W are 77 kg and 23 kg correspondingly.

In the second one – the fast radiation cooling mode – which arises due to 15% increase of the initial core energy loss rate, the vaporized W penetrates directly to the hot core and radiates the plasma energy at least 5 times faster than in the weak shielding mode. As a result, the entire vertically displaced core is cooled by radiation during less than 1 ms, the W amount, vaporized during VDE is reduced to 0.8 kg, the melted pool depth is 92 μm and the amount of melted W is 60 kg.



中文翻译:

在DEMO中向上VDE期间对第一壁屏蔽的仿真

使用TOKES代码对岩心中的0.6 GJ残余等离子体能量的向上VDE期间的DEMO第一壁损伤进行了首次模拟。模拟显示了两种本质上不同的热等离子体核心冷却模式。在第一个模型中,我们提议将其称为弱屏蔽模式,将在VDE期间从壁蒸发的钨量的估计值从不进行屏蔽的模拟的5.7 kg减少到5∙10 -4 kg(熔化池深度为无屏蔽的壁表面几乎保持相同的158μm,弱屏蔽的壁表面保持140μm。W的熔化量分别为77kg和23kg。

在第二种方法中-快速辐射冷却模式–是由于初始纤芯能量损失率提高15%而产生的,汽化的W直接渗透到热纤芯中,并且辐射等离子体能量的速度至少是弱屏蔽中的5倍模式。结果,整个竖直移位的芯部在不到1 ms的时间内通过辐射冷却,在VDE中蒸发的W量减少到0.8 kg,熔池深度为92μm,W的熔融量为60 kg。

更新日期:2020-06-24
down
wechat
bug