当前位置: X-MOL 学术J. Process Control › 论文详情
An optimized long short-term memory network based fault diagnosis model for chemical processes
Journal of Process Control ( IF 3.624 ) Pub Date : 2020-06-24 , DOI: 10.1016/j.jprocont.2020.06.005
Yongming Han; Ning Ding; Zhiqiang Geng; Zun Wang; Chong Chu

With the development of the chemical industry, fault diagnosis of chemical processes has become a challenging problem because of the high-dimensional data and complex time correlation caused by the more complex chemical processes and increasing number of equipment. However, the ordinary feedforward neural network cannot solve these problems very well. Therefore, this paper proposes a fault diagnosis model based on the optimized long short-term memory (LSTM) network. Since the number of hidden layer nodes in the LSTM network has a great influence on the diagnosis result, the link of determining the optimal number of hidden layer nodes by the iterative method based on the LSTM network is added. Then the LSTM is optimized to get higher chemical process fault diagnosis accuracy. Finally, through the simulation experiment of the Tennessee Eastman (TE) chemical process, the results verify that the optimized LSTM network has better performance in chemical process fault diagnosis than the BP neural network, the multi-layer perceptron method and the original LSTM network.
更新日期:2020-06-24

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug