当前位置: X-MOL 学术Fuel Process. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal management and methanation performance of a microchannel-based Sabatier reactor/heat exchanger utilising renewable hydrogen
Fuel Processing Technology ( IF 7.2 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.fuproc.2020.106508
Nicolaas Engelbrecht , Raymond C. Everson , Dmitri Bessarabov

Abstract Power-to-methane is a concept that offers the storage and utilisation of renewable energy, while recycling industrial CO2 emissions, for carbon-based fuel production. An experimental microchannel reactor, that supports self-sustained operation, was evaluated for the Sabatier (methanation) reaction, using renewable hydrogen from a solar-to‑hydrogen storage facility. Hydrogen, a common heat transfer medium, also provided the reactor's cooling requirements. Particular focus was placed on evaluation of the flow configuration within the reactor (co- and counter-current flow), because improved thermal management may offer enhanced CO2 methanation reaction equilibrium. The effects of the following, within specified ranges, were determined, in terms of the reactor's thermal behaviour and the resulting methanation performance: the total methanation flow (4–7 NL min−1), coolant flow (0.8–5.6 NL min−1) and reaction pressure (5 and 10 barg). The counter-current flow configuration provided a decreasing temperature profile, with improved methanation performance and heat recovery. The recommended operating point was found to be under the following experimental conditions: a methanation flow of 7 NL min−1, coolant flow of 5.2 NL min−1 and reaction pressure of 10 barg. A CO2 conversion of 90.5% and CH4 power output of 667.1 W were achieved, while an overall methanation process efficiency of 76.6% was attained.

中文翻译:

利用可再生氢的基于微通道的 Sabatier 反应器/热交换器的热管理和甲烷化性能

摘要 电能制甲烷是一个概念,它提供可再生能源的存储和利用,同时回收工业二氧化碳排放,用于碳基燃料生产。一个支持自我维持操作的实验性微通道反应器被评估用于 Sabatier(甲烷化)反应,使用来自太阳能到氢气存储设施的可再生氢气。氢气是一种常见的传热介质,也满足了反应器的冷却要求。特别关注反应器内流动配置的评估(顺流和逆流),因为改进的热管理可以提供增强的 CO2 甲烷化反应平衡。根据反应器的热行为和由此产生的甲烷化性能,确定了在指定范围内的以下影响:甲烷化总流量 (4–7 NL min-1)、冷却剂流量 (0.8–5.6 NL min-1) 和反应压力(5 和 10 barg)。逆流流动配置提供了降低的温度分布,具有改进的甲烷化性能和热回收。发现推荐的操作点是在以下实验条件下:7 NL min-1 的甲烷化流量,5.2 NL min-1 的冷却剂流量和 10 barg 的反应压力。实现了 90.5% 的 CO2 转化率和 667.1 W 的 CH4 功率输出,同时实现了 76.6% 的整体甲烷化过程效率。发现推荐的操作点是在以下实验条件下:7 NL min-1 的甲烷化流量,5.2 NL min-1 的冷却剂流量和 10 barg 的反应压力。实现了 90.5% 的 CO2 转化率和 667.1 W 的 CH4 功率输出,同时实现了 76.6% 的整体甲烷化过程效率。发现推荐的操作点是在以下实验条件下:7 NL min-1 的甲烷化流量,5.2 NL min-1 的冷却剂流量和 10 barg 的反应压力。实现了 90.5% 的 CO2 转化率和 667.1 W 的 CH4 功率输出,同时实现了 76.6% 的整体甲烷化过程效率。
更新日期:2020-11-01
down
wechat
bug