当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic and exergy analysis of a S-CO2 Brayton cycle with various of cooling modes
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.enconman.2020.113110
Hemin Hu , Yuyan Jiang , Chaohong Guo , Shiqiang Liang

Abstract The thermal performance of S-CO2 Brayton cycle is deeply affected by the cooling mode as well as the meteorological and hydrologic conditions. We proposed the three different cooling modes, wet cooling system (WCS), dry cooling system (DCS) and hybrid cooling system (HCS), to the S-CO2 Brayton cycle, and its thermodynamic model was established adopting Ebsilon code. From the viewpoints of both energy and exergy, the efficiencies of cycles with WCS, DCS and HCS as well as the exergy loss distribution of component were analyzed, under full and partial load conditions. Then the influences of changeable meteorological parameters on the cycle performance and the corresponding thermodynamic parameters were studied. Results show the generation efficiency of cycle with DCS is highest, followed by that of cycle with HCS and WCS, and the corresponding supply efficiency of cycle with the three cooling modes are in reverse order. The thermal performance of S-CO2 Brayton cycle gradually deteriorates, as the ambient temperature increases (WCS, HCS, and DCS) or relative humidity decreases (WCS and HCS). HCS shows excellent water saving capacity (variation range of water saving ratio is 59.08%~95.56%), and its water saving effect is more obvious, as ambient temperature decreases and relative humidity increases. Meanwhile, HCS brings equivalent cycle thermal efficiency to WCS, which is recommended for the S-CO2 Brayton cycle in the water arid regions. The present research may lay a foundation for the water cooling system design and the whole cycle operation optimization.

中文翻译:

具有各种冷却模式的 S-CO2 布雷顿循环的热力学和火用分析

摘要 S-CO2布雷顿循环的热性能受冷却方式和气象水文条件的影响很大。我们针对S-CO2布雷顿循环提出了湿式冷却系统(WCS)、干式冷却系统(DCS)和混合冷却系统(HCS)三种不同的冷却方式,并采用Ebsilon代码建立了其热力学模型。从能量和火用的角度,分析了WCS、DCS和HCS的循环效率以及元件在满载和部分负载条件下的火用损失分布。然后研究了变化的气象参数对循环性能的影响以及相应的热力学参数。结果表明,DCS循环的发电效率最高,其次是HCS和WCS循环,三种制冷方式对应的循环供给效率顺序相反。随着环境温度升高(WCS、HCS 和 DCS)或相对湿度降低(WCS 和 HCS),S-CO2 布雷顿循环的热性能逐渐恶化。HCS表现出优异的节水能力(节水率变化范围为59.08%~95.56%),随着环境温度的降低,相对湿度的升高,节水效果更加明显。同时,HCS 带来了与 WCS 等效的循环热效率,推荐用于水干旱地区的 S-CO2 布雷顿循环。本研究可为水冷系统设计和全循环运行优化奠定基础。随着环境温度升高(WCS、HCS 和 DCS)或相对湿度降低(WCS 和 HCS),S-CO2 布雷顿循环的热性能逐渐恶化。HCS表现出优异的节水能力(节水率变化范围为59.08%~95.56%),随着环境温度的降低,相对湿度的升高,节水效果更加明显。同时,HCS 带来了与 WCS 等效的循环热效率,推荐用于水干旱地区的 S-CO2 布雷顿循环。本研究可为水冷系统设计和全循环运行优化奠定基础。随着环境温度升高(WCS、HCS 和 DCS)或相对湿度降低(WCS 和 HCS),S-CO2 布雷顿循环的热性能逐渐恶化。HCS表现出优异的节水能力(节水率变化范围为59.08%~95.56%),随着环境温度的降低,相对湿度的升高,节水效果更加明显。同时,HCS 带来了与 WCS 等效的循环热效率,推荐用于水干旱地区的 S-CO2 布雷顿循环。本研究可为水冷系统设计和全循环运行优化奠定基础。HCS表现出优异的节水能力(节水率变化范围为59.08%~95.56%),随着环境温度的降低,相对湿度的升高,节水效果更加明显。同时,HCS 带来了与 WCS 等效的循环热效率,推荐用于水干旱地区的 S-CO2 布雷顿循环。本研究可为水冷系统设计和全循环运行优化奠定基础。HCS表现出优异的节水能力(节水率变化范围为59.08%~95.56%),随着环境温度的降低,相对湿度的升高,节水效果更加明显。同时,HCS 带来了与 WCS 等效的循环热效率,推荐用于水干旱地区的 S-CO2 布雷顿循环。本研究可为水冷系统设计和全循环运行优化奠定基础。
更新日期:2020-09-01
down
wechat
bug