当前位置: X-MOL 学术Vision Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accommodation responses following contrast adaptation.
Vision Research ( IF 1.5 ) Pub Date : 2020-03-24 , DOI: 10.1016/j.visres.2020.03.003
Pablo Sanz Diez 1 , Frank Schaeffel 2 , Siegfried Wahl 1 , Arne Ohlendorf 1
Affiliation  

The current study explored the effects of contrast adaptation on the accommodation response (AR), using low- and high-pass filtered video clips as stimuli. Ten young myopic (mean ± standard deviation: -2.91 ± 1.36D) and 10 near emmetropic subjects (-0.19 ± 0.14D) participated in the study. The AR was monitored under monocular viewing conditions using an eccentric infrared photorefractor. A 2-stage procedure was used: (1) the minimum spatial frequency content necessary to produce a proper individual AR; and (2) the AR was compared before and after adaptation to low-pass (s = -0.5), control (s = 0) and high-pass (s = +0.5) filtered videos. We found that (1) the average threshold Sinc-blur of both myopes and emmetropes necessary to evoke accommodation was (mean ± standard deviation) λ = 7.40 ± 4.05 cpd. Myopes required a higher Sinc blur (average, 10.00 ± 4.05 cpd) compared to emmetropes (average, 4.80 ± 1.60 cpd). (2) Adaptation to low-pass filtered videos increased the AR by 0.41 ± 0.33D in the myopic group and reduced it in the emmetropic group by 0.31 ± 0.25D. Adaptation to high pass-filtered videos induced similar changes in both refractive groups (an increase of 0.41 ± 0.40D and 0.46 ± 0.29D for myopes and emmetropes, respectively). Our measurements show that the human AR can be modified by spatial frequency selective contrast adaptation although these were short-term effects. The perhaps most striking finding was that adaptation to low pass filtered videos had opposite effects on the AR in emmetropes and myopes. It remains to be studied whether these differences were a consequence of myopia or a contributing factor in myopia development.

中文翻译:

适应对比后的适应反应。

当前的研究使用低通和高通滤波后的视频片段作为刺激,探索了对比度适应对适应性反应(AR)的影响。十名年轻近视眼(平均±标准差:-2.91±1.36D)和10名近视眼受试者(-0.19±0.14D)参加了研究。使用偏心红外光折射仪在单眼观察条件下监控AR。使用了两个阶段的程序:(1)产生适当的单个AR所需的最小空间频率含量;(2)比较了适应低通(s = -0.5),对照(s = 0)和高通(s = +0.5)过滤视频前后的AR。我们发现(1)引起适应的近视眼和正视眼的平均阈值Sinc-blur为(平均值±标准偏差)λ= 7.40±4.05 cpd。近视需要较高的Sinc模糊(平均值为10)。00±4.05 cpd)与正视(平均4.80±1.60 cpd)相比。(2)适应低通滤过视频后,近视组的AR增加0.41±0.33D,正视组的AR减少0.31±0.25D。适应高通滤波视频会在两个折射组中引起相似的变化(近视眼和正视眼分别增加0.41±0.40D和0.46±0.29D)。我们的测量结果表明,尽管这是短期效应,但可以通过空间频率选择性对比度适应来修改人类AR。也许最引人注目的发现是适应低通滤波视频对正视眼和近视眼的AR有相反的影响。这些差异是近视的结果还是近视发展的促成因素仍有待研究。80±1.60 cpd)。(2)适应低通滤过视频后,近视组的AR增加0.41±0.33D,正视组的AR减少0.31±0.25D。适应高通滤波视频会在两个折射组中引起相似的变化(近视眼和正视眼分别增加0.41±0.40D和0.46±0.29D)。我们的测量结果表明,尽管这是短期效应,但可以通过空间频率选择性对比度适应来修改人类AR。也许最引人注目的发现是适应低通滤波视频对正视眼和近视眼的AR有相反的影响。这些差异是近视的结果还是近视发展的促成因素仍有待研究。80±1.60 cpd)。(2)适应低通滤过视频后,近视组的AR增加0.41±0.33D,正视组的AR减少0.31±0.25D。适应高通滤波视频会在两个折射组中引起相似的变化(近视眼和正视眼分别增加0.41±0.40D和0.46±0.29D)。我们的测量结果表明,尽管这是短期效应,但可以通过空间频率选择性对比度适应来修改人类AR。也许最引人注目的发现是适应低通滤波视频对正视眼和近视眼的AR有相反的影响。这些差异是近视的结果还是近视发展的促成因素仍有待研究。近视组为33D,正视组为33D减少了0.31±0.25D。适应高通滤波视频会在两个折射组中引起相似的变化(近视眼和正视眼分别增加0.41±0.40D和0.46±0.29D)。我们的测量结果表明,尽管这是短期效应,但可以通过空间频率选择性对比度适应来修改人类AR。也许最引人注目的发现是适应低通滤波视频对正视眼和近视眼的AR有相反的影响。这些差异是近视的结果还是近视发展的促成因素仍有待研究。近视组为33D,正视组为33D减少了0.31±0.25D。适应高通滤波视频会导致两个屈光度组发生类似变化(近视眼和正视眼分别增加0.41±0.40D和0.46±0.29D)。我们的测量结果表明,尽管这是短期效应,但可以通过空间频率选择性对比度适应来修改人类AR。也许最引人注目的发现是适应低通滤波视频对正视眼和近视眼的AR有相反的影响。这些差异是近视的结果还是近视发展的促成因素仍有待研究。近视眼和正视眼分别为40D和0.46±0.29D)。我们的测量结果表明,尽管这是短期效应,但可以通过空间频率选择性对比度适应来修改人类AR。也许最引人注目的发现是适应低通滤波视频对正视眼和近视眼的AR有相反的影响。这些差异是近视的结果还是近视发展的促成因素仍有待研究。近视眼和正视眼分别为40D和0.46±0.29D)。我们的测量结果表明,尽管这是短期效应,但可以通过空间频率选择性对比度适应来修改人类AR。也许最引人注目的发现是适应低通滤波视频对正视眼和近视眼的AR有相反的影响。这些差异是近视的结果还是近视发展的促成因素仍有待研究。
更新日期:2020-03-24
down
wechat
bug