当前位置: X-MOL 学术Environ. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance evaluation of microbial fuel cell using a radiation synthesized low density polyethylene-grafted-poly (glycidyl methacrylate-co-vinyl acetate) as a proton exchange membrane
Environmental Technology ( IF 2.2 ) Pub Date : 2020-07-07 , DOI: 10.1080/09593330.2020.1786168
Hanan M Abd-Elmabood 1 , Amany I Raafat 1 , El-Sayed A Soliman 2 , Amr El-Hag Ali 1
Affiliation  

ABSTRACT

The present work focuses on the synthesis of a proton exchange membrane to be assembled in a microbial fuel cell (MFC) for simultaneous bioelectricity production and domestic wastewater treatment. The indigenous membrane was prepared by ionizing irradiation-induced graft copolymerization of glycidyl methacrylate (GMA) and vinyl acetate (VAc) onto low-density polyethylene and subsequently, the prepared grafted sheets were sulfonated via epoxy ring-opening of PGMA moieties. Parameters affecting the grafting degree were investigated and the prepared membranes were characterized by investigating their structural, thermal, mechanical, and electrical properties. Some physicochemical characteristics including ion exchange capacity, sulfonation density, and proton conductivity were also evaluated. The data confirmed the success of the preparation protocol to obtain a suitable membrane for the proposed application. Moreover, the performance of the assembled MFC was thoroughly investigated through the evaluation of its electrochemical behaviour including cyclic voltammetry, electrochemical impedance spectroscopy, columbic efficiency, and wastewater treatment capability. The sulfonated LDPE-g-P(GMA-co-VAc) membrane of 80% grafting degree shows substantial removal of chemical oxygen demand up to about 90% with columbic efficiency of 10.1%, columbic recovery of 8.7%, rate of energy harvest of 2.1 C/h and power density of 2.72 W m−2. However, the use of 10 mM of KMnO4 as electron acceptor drastically increase the harvested power density to reach 356.4 W m−2



中文翻译:

使用辐射合成低密度聚乙烯接枝聚(甲基丙烯酸缩水甘油酯-co-醋酸乙烯酯)作为质子交换膜的微生物燃料电池性能评估

摘要

目前的工作重点是合成质子交换膜,将其组装在微生物燃料电池 (MFC) 中,用于同时生产生物电和生活废水处理。通过将辐照诱导的甲基丙烯酸缩水甘油酯 (GMA) 和醋酸乙烯酯 (VAc) 接枝共聚在低密度聚乙烯上制备原生膜,然后通过 PGMA 部分的环氧开环磺化制备的接枝片材。研究了影响接枝度的参数,并通过研究它们的结构、热、机械和电性能来表征制备的膜。还评估了一些物理化学特性,包括离子交换容量、磺化密度和质子电导率。数据证实了制备方案的成功,以获得适合拟议应用的膜。此外,通过评估其电化学行为,包括循环伏安法、电化学阻抗谱、库比效率和废水处理能力,对组装的 MFC 的性能进行了深入研究。80% 接枝度的磺化 LDPE-gP(GMA-co-VAc) 膜对化学需氧量的去除率高达约 90%,库伦效率为 10.1%,库伦回收率为 8.7%,能量收集率为 2.1 C /h 和 2.72 W m 的功率密度 电化学阻抗谱、库比效率和废水处理能力。80% 接枝度的磺化 LDPE-gP(GMA-co-VAc) 膜对化学需氧量的去除率高达约 90%,库伦效率为 10.1%,库伦回收率为 8.7%,能量收集率为 2.1 C /h 和 2.72 W m 的功率密度 电化学阻抗谱、库比效率和废水处理能力。80% 接枝度的磺化 LDPE-gP(GMA-co-VAc) 膜对化学需氧量的去除率高达约 90%,库伦效率为 10.1%,库伦回收率为 8.7%,能量收集率为 2.1 C /h 和 2.72 W m 的功率密度-2。然而,使用 10 mM 的 KMnO 4作为电子受体极大地增加了收获的功率密度,达到 356.4 W m -2

更新日期:2020-07-07
down
wechat
bug