当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial Active Matter: A Topological Framework
Frontiers in Physics ( IF 1.9 ) Pub Date : 2020-04-28 , DOI: 10.3389/fphy.2020.00184
Anupam Sengupta

Topology transcends boundaries that conventionally delineate physical, biological, and engineering sciences. Our ability to mathematically describe topology, combined with recent access to precision tracking and manipulation approaches, has triggered a fresh appreciation of topological ramifications in biological systems. Microbial ecosystems, a classic example of living matter, offer a rich test bed for exploring the role of topological defects in shaping community compositions, structure, and functions spanning orders in length and time scales. Microbial activity—characteristic of such structured, out-of-equilibrium systems—triggers emergent processes that endow evolutionary and ecological benefits to microbial communities. The scene stealer of this developing cross-disciplinary field of research is the topological defects: singularities that nucleate due to spontaneous symmetry breaking within the microbial system or within the surrounding material field. The interplay of geometry, order, and topology elicit novel, if not unexpected dynamics that are at the heart of active and emergent processes in such living systems. In this short review, I have put together a summary of the key recent advances that highlight the interface of active liquid crystal physics and the physical ecology of microbes; and combined it with original data from experiments on sessile species as a case to demonstrate how this interface offers a biophysical framework that could help to decode and harness active microbial processes in true ecological settings. Topology and its functional manifestations—a crucial and well-timed topic—offer a rich opportunity for both experimentalists and theoreticians willing to take up an exciting journey across scales and disciplines.



中文翻译:

微生物活性物质:拓扑框架

拓扑超越了传统上划定物理,生物和工程科学的界限。我们以数学方式描述拓扑的能力,再加上最近对精确跟踪和操纵方法的访问,已经触发了对生物系统拓扑分支的新认识。微生物生态系统是生命的经典例子,它为探讨拓扑缺陷在塑造社区组成,结构和功能方面的作用提供了丰富的试验平台,这些组成,结构和功能跨越了长度和时间尺度。微生物活动(这种结构性,失衡系统的特征)触发了新兴过程,为微生物群落带来了进化和生态效益。这个不断发展的跨学科研究领域的抢镜者是拓扑缺陷:由于微生物系统内或周围物质场内自发对称性破坏而成核的奇异点。几何,顺序和拓扑之间的相互作用会引发新颖的,甚至是不可预见的动力学,这些动力学是此类生命系统中活跃和新兴过程的核心。在这篇简短的评论中,我总结了最近的主要进展,这些进展突显了活跃的液晶物理学与微生物的物理生态学之间的接口;并将其与无柄物种实验的原始数据结合起来,以证明该界面如何提供一种生物物理框架,从而有助于解码和利用微生物中的活性微生物过程 拓扑结构引发了新颖的,甚至是意外的动力学,这些动力学是此类生命系统中活跃和紧急过程的核心。在这篇简短的评论中,我总结了最近的主要进展,这些进展突显了活跃的液晶物理学与微生物的物理生态学之间的接口;并将其与无柄物种实验中的原始数据结合起来,以证明该界面如何提供生物物理框架,从而有助于解码和利用微生物中的活性微生物过程 拓扑结构引发了新颖的,甚至是意外的动力学,这些动力学是此类生命系统中活跃和紧急过程的核心。在这篇简短的评论中,我总结了最近的主要进展,这些进展突显了活跃的液晶物理学与微生物的物理生态学之间的接口;并将其与无柄物种实验中的原始数据结合起来,以证明该界面如何提供生物物理框架,从而有助于解码和利用微生物中的活性微生物过程真正生态环境。拓扑及其功能表现(一个至关重要且时机合适的主题)为愿意在规模和学科之间进行激动人心的旅程的实验学家和理论学家提供了丰富的机会。

更新日期:2020-06-23
down
wechat
bug