当前位置: X-MOL 学术Struct. Des. Tall Spec. Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cross‐level fragility analysis of modularized suspended buildings based on experimentally validated numerical models
The Structural Design of Tall and Special Buildings ( IF 1.8 ) Pub Date : 2020-06-23 , DOI: 10.1002/tal.1778
Zhihang Ye 1, 2 , Abdollah Shafieezadeh 2 , Halil Sezen 2 , Gang Wu 1 , De‐Cheng Feng 1
Affiliation  

Suspended buildings typically have a core as the primary and suspended floors as the secondary structures. These configurations offer visual transparency, smaller vertical components, and seismic attenuation via the primary–secondary structure interaction. Such attenuation is further enhanced by the modularization of the suspended segment which allows large drifts but prevents them from causing damage. Previously conducted shake‐table tests have confirmed these features. However, how the component performance contributes to system performance has not been quantitated. To address this gap, fragility analyses are conducted for 10‐story experimentally validated models with optimized supplemental dampers and inter‐module stiffness. Multiple limit state functions are proposed to provide a full account of damage sources. Additionally, a mapping rule from the component‐level to the system‐level limit states is developed which captures the influence of damage distribution on system‐level limit states. Results for the uncontrolled suspended building indicate that for the PGV of 0.5 m/s, the failure probabilities of the repairable and life safety limit states are 97% and 83%, respectively. These probabilities are 92% and 27% for the frame structure with viscous dampers, 58% and 5% for the passive‐controlled modularized suspended building system (MSBS), and 45% and 3% for MSBS with optimal vertical distributions of modularized secondary structure.

中文翻译:

基于实验验证的数值模型的模块化悬空建筑的跨级别脆弱性分析

悬浮建筑物通常以核心为主要结构,悬浮地板为次要结构。这些配置通过一级-二级结构交互作用提供了视觉透明性,较小的垂直分量以及地震衰减。悬挂段的模块化进一步增强了这种衰减,它允许较大的漂移,但可以防止它们造成损坏。先前进行的振动台测试已经确认了这些功能。但是,尚未量化组件性能如何对系统性能做出贡献。为了弥补这一差距,我们对10层经过实验验证的模型进行了脆性分析,这些模型具有优化的辅助阻尼器和模块间刚度。提出了多个极限状态函数,以提供对损坏源的完整描述。另外,建立了从组件级到系统级极限状态的映射规则,该规则捕获了损害分布对系统级极限状态的影响。不受控制的悬空建筑物的结果表明,对于PGV为0.5 m / s的情况,可修复状态和生命安全极限状态的故障概率分别为97%和83%。对于具有粘性阻尼器的框架结构,这些概率分别为92%和27%;对于被动控制的模块化悬挂式建筑系统(MSBS),这些概率分别为58%和5%;对于具有模块化二级结构最佳垂直分布的MSBS,这些概率为45%和3% 。可修复状态和生命安全极限状态的故障概率分别为97%和83%。对于具有粘性阻尼器的框架结构,这些概率分别为92%和27%;对于被动控制的模块化悬挂式建筑系统(MSBS),这些概率分别为58%和5%;对于具有模块化二级结构最佳垂直分布的MSBS,这些概率为45%和3% 。可修复状态和生命安全极限状态的故障概率分别为97%和83%。对于具有粘性阻尼器的框架结构,这些概率分别为92%和27%;对于被动控制的模块化悬挂式建筑系统(MSBS),这些概率分别为58%和5%;对于具有模块化二级结构最佳垂直分布的MSBS,这些概率为45%和3% 。
更新日期:2020-06-23
down
wechat
bug