当前位置: X-MOL 学术J. Chem. Thermodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solid-liquid equilibrium solubility, thermodynamic properties, solvent effect of Ipriflavone in twelve pure solvents at various temperatures
The Journal of Chemical Thermodynamics ( IF 2.6 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jct.2020.106231
Zibo Huang , Yuanyuan Zun , Yi Gong , Xiaoran Hu , Jiao Sha , Yu Li , Tao Li , Baozeng Ren

Abstract In this study, by using laser dynamic monitoring, the dissolution behavior of ipriflavone (IP) in pure solvents of methanol, ethanol, n-propanol, n-butyl alcohol, 1-pentanol, methyl acetate, DMF, DMAC, acetone, acetonitrile, methylbenzene at (278.15–323.15) K and dichloromethane at (278.15–308.15) K was investigated under 0.1 MPa. The results showed that the molar solubility of IP in pure solvents increases non-linearly with the increase of the experimental temperature. The order of the solubility of IP in the pure solvents studied is: dichloromethane > DMAC > DMF > methylbenzene > methyl acetate > acetone > acetonitrile > 1-pentanol > n-butyl alcohol > n-propanol > ethanol > methanol. Moreover, experimental solubility data were correlated well with five thermodynamic models (Apelblat, λH, NRTL, UNIQUAC, and Van't hoff model). The calculation results showed that the Apelblat model has the smallest average values of the relative deviation (ARD) and root mean square deviation (104RMSD), being 1.878% and 2.933, respectively. Furthermore, the influence of solvent–solute interactions on the solubility of IP in pure solvents was analyzed by using the KAT-LSER model. In addition, the apparent thermodynamic properties(△solG°, △solH°, △solS°) of IP in pure solvents were calculated by correlating experimental solubility data with the Van't hoff model. The results show that the dissolution process of IP in the experimental solvents was endothermic and entropy-driven.

中文翻译:

艾普黄酮在十二种纯溶剂中不同温度下的固液平衡溶解度、热力学性质、溶剂效应

摘要 本研究通过激光动态监测,研究了异丙黄酮 (IP) 在甲醇、乙醇、正丙醇、正丁醇、1-戊醇、乙酸甲酯、DMF、DMAC、丙酮、乙腈等纯溶剂中的溶解行为。 , 在 (278.15–323.15) K 下的甲苯和在 (278.15–308.15) K 下的二氯甲烷在 0.1 MPa 下进行了研究。结果表明,IP在纯溶剂中的摩尔溶解度随着实验温度的升高呈非线性增加。IP 在纯溶剂中的溶解度顺序为:二氯甲烷 > DMAC > DMF > 甲苯 > 乙酸甲酯 > 丙酮 > 乙腈 > 1-戊醇 > 正丁醇 > 正丙醇 > 乙醇 > 甲醇。此外,实验溶解度数据与五种热力学模型(Apelblat、λH、NRTL、UNIQUAC、和范特霍夫模型)。计算结果表明,Apelblat模型的相对偏差(ARD)和均方根偏差(104RMSD)的平均值最小,分别为1.878%和2.933。此外,使用 KAT-LSER 模型分析了溶剂 - 溶质相互作用对 IP 在纯溶剂中的溶解度的影响。此外,通过将实验溶解度数据与Van't hoff模型相关联,计算了纯溶剂中IP的表观热力学性质(△solG°,△solH°,△solS°)。结果表明,IP 在实验溶剂中的溶解过程是吸热和熵驱动的。分别为 1.878% 和 2.933。此外,使用 KAT-LSER 模型分析了溶剂 - 溶质相互作用对 IP 在纯溶剂中的溶解度的影响。此外,通过将实验溶解度数据与Van't hoff模型相关联,计算了纯溶剂中IP的表观热力学性质(△solG°,△solH°,△solS°)。结果表明,IP 在实验溶剂中的溶解过程是吸热和熵驱动的。分别为 1.878% 和 2.933。此外,使用 KAT-LSER 模型分析了溶剂 - 溶质相互作用对 IP 在纯溶剂中的溶解度的影响。此外,通过将实验溶解度数据与Van't hoff模型相关联,计算了纯溶剂中IP的表观热力学性质(△solG°,△solH°,△solS°)。结果表明,IP 在实验溶剂中的溶解过程是吸热和熵驱动的。
更新日期:2020-11-01
down
wechat
bug