当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling the energetic and structural properties of Pu doped zircon through electrochemical equilibrium diagram from DFT+U calculations
Journal of Nuclear Materials ( IF 2.8 ) Pub Date : 2020-06-23 , DOI: 10.1016/j.jnucmat.2020.152234
Xiaoyong Yang , Ziwei Wang , Zhitong Xu , Shuyang Li , John Per Albert Wärnå , Ping Zhang , Yong Yi , Tao Duan

Zircon (ZrSiO4) mineral is a sustainable and promising material to store of radioactive waste that has received extensive attention by material, geochemical and environmental scientists. Although the incorporation of actinide elements in zircon lattices has been experimentally studied, bare fundamental work are carried out to systemically assess the structural and chemical stabilities of Pu doped zircon. The primary aim to unveil the Pu immobilization mechanism and assess the stability of PuxZr1−xSiO4 is carried out by calculating the formation energies, electron and hole affinities, and electronic levels of Pu doped zircon based on density functional theory. Our results reveal under μ = μOpoor condition PuSi4+, PuZr1+ and PuZr0 are respectively energetically favorable to form with increasing the electronic chemical potential. Besides, PuZr4+ is energetically favorable in an n-type environment under all these three conditions (i.e., μ = μOpoor, μ = μPu/Zr, μ = μPu/Si). In addition, Pu doping will induce local structural distortion. Intriguingly however, self-repairing the symmetry of [ZrO8] polyhedra is first observed via the structural distortion in PuZr4+ configuration, which in turn could enhance the structural stability of PuxZr1−xSiO4. Ab initio molecular dynamic simulations demonstrate the configurations with negative formation energies are thermal stable at 500 K. The charge density difference and charge transfer are investigated to describe the chemical bonding nature. It is demonstrated Pu(5f)-O(2p) hybridization is more profound for interstitial Pu. Moreover, the bonding character of surrounding Zr atoms along [010] direction is almost identical to the pristine one, while it is distinctly changed towards [100] and [001] directions, showing remarkable anisotropy of PuxZr1−xSiO4. Oppositely, the ionicity in Pu–O bond is mainly featured when Zr or Si sites are substituted by Pu atoms which becomes stronger with increasing the hole doping process.



中文翻译:

通过DFT + U计算的电化学平衡图揭示掺Pu锆石的能量和结构性质

锆石(ZrSiO 4)矿物是一种可持续的,有前途的材料,用于存储放射性废物,已受到材料,地球化学和环境科学家的广泛关注。尽管已通过实验研究了of系元素在锆石晶格中的掺入,但仅进行了基础研究,系统地评估了掺Pu锆石的结构和化学稳定性。通过基于密度泛函理论计算Pu掺杂锆石的形成能,电子和空穴亲和力以及电子能级,从而揭示Pu固定化机理并评估Pu x Zr 1- x SiO 4稳定性的主要目的。我们的结果表明μ= μØ-较差的随着电子化学势的增加,Pu Si 4+,Pu Zr 1+和Pu Zr 0分别在能量上有利于形成。此外,在所有这三个条件下,Pu Zr 4+n型环境中在能量上都有利(μ= μØ-较差的,μ= μ/,μ= μ/)。另外,Pu掺杂会引起局部结构变形。然而,有趣的是,首先通过Pu Zr 4+构型的结构变形观察到[ZrO 8 ]多面体的对称性的自我修复,这反过来又可以增强Pu x Zr 1- x SiO 4的结构稳定性。从头算分子动力学模拟表明,具有负形成能的构型在500 K下是热稳定的。研究了电荷密度差和电荷转移以描述化学键合性质。证明了Pu(5 f)-O(2 p)对于插页式Pu,杂交更为深刻。此外,沿[010]方向的周围Zr原子的键合特性几乎与原始原子相同,而沿[100]和[001]方向则明显改变,显示出Pu x Zr 1- x SiO 4的显着各向异性。相反,当Zr或Si位被Pu原子取代时,Pu-O键的离子性主要表现出来,随着空穴掺杂过程的增加,Pu-O键的离子性变强。

更新日期:2020-06-27
down
wechat
bug