当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental verification of a crystal plasticity-based simulation framework for predicting microstructure and geometric shape changes: Application to bending and Taylor impact testing of Zr
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.ijimpeng.2020.103655
Evgenii Vasilev , Miroslav Zecevic , Rodney J. McCabe , Marko Knezevic

Abstract This paper is concerned with experimental verification of a recently developed multi-scale simulation framework for plastic deformation of metallic materials from quasi-static to impact deformation conditions. The framework is a visco-plastic self-consistent (VPSC) polycrystalline model embedded in an implicit finite element method (FE-VPSC) to provide a microstructure-sensitive constitutive response at each material point. Each material point of the FEM model is a polycrystalline aggregate with crystallographic deformation mechanisms operating at the single crystal scale with their evolving activity based on a dislocation density-based hardening law and texture. Four beams and three cylinders machined in different orientations from a textured plate of high-purity zirconium are tested quasi-statically in 4-point bending and at speeds of 100 m/s, 170 m/s and 243 m/s during Taylor impact tests, respectively. The variation in dimensional changes resulting from different sample orientations in the plate with respect to loading directions is measured for each sample. Moreover, texture and twinning characterization is performed using electron backscattered diffraction (EBSD). The deformation processes and underlying evolution of microstructure are successfully simulated using the FE-VPSC framework. In doing so, the model parameters are optimized and validated across a broad range of strain rates and temperatures. Simulation results in terms of geometrical changes and microstructural evolution are compared with the experimental measurements. The model predicts anisotropic material flow resulting from the hard-to-deform crystallographic directions, the development of gradients in texture and twinning through the geometries, tension–compression asymmetry, as well as the extent of plasticity under impact.

中文翻译:

用于预测微观结构和几何形状变化的基于晶体塑性的模拟框架的实验验证:在 Zr 弯曲和泰勒冲击试验中的应用

摘要 本文涉及对最近开发的金属材料塑性变形从准静态到冲击变形条件的多尺度模拟框架的实验验证。该框架是一种嵌入隐式有限元方法 (FE-VPSC) 的粘塑性自洽 (VPSC) 多晶模型,可在每个材料点提供对微观结构敏感的本构响应。FEM 模型的每个材料点都是多晶聚集体,具有在单晶尺度上运行的晶体变形机制,其演化活动基于基于位错密度的硬化规律和纹理。由高纯度锆织构板以不同方向加工的四个梁和三个圆柱体在泰勒冲击试验期间以 100 m/s、170 m/s 和 243 m/s 的速度在 4 点弯曲中进行准静态测试, 分别。对于每个样品,测量由板中不同样品取向导致的尺寸变化相对于加载方向的变化。此外,使用电子背散射衍射 (EBSD) 进行纹理和孪晶表征。使用 FE-VPSC 框架成功地模拟了变形过程和微观结构的潜在演变。这样做时,模型参数在广泛的应变率和温度范围内得到优化和验证。将几何变化和微观结构演变方面的模拟结果与实验测量结果进行比较。该模型预测由难以变形的晶体方向、纹理梯度的发展和几何结构中的孪晶、拉压不对称以及冲击下的塑性程度导致的各向异性材料流动。
更新日期:2020-10-01
down
wechat
bug