当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controllable Biosynthesis of Nanoscale Schwertmannite and the Application in Heavy Metal Effective Removal
Applied Surface Science ( IF 6.3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.apsusc.2020.147012
Jianyu Zhu , Fang Chen , Min Gan

Abstract Schwertmannite was widely used to control the mobility and bioavailability of heavy metals. However, controllable biosynthesis of schwertmannite through a mild way is challenging. The objective of this research is to systematically investigate the feasibility of controllable biosynthesis of nanoscale schwertmannite through aluminum modification and evaluates the removal efficiency and mechanism of heavy metals. The results showed that Fe(II) oxidizing and biosynthesis ability of Acidithiobacillu ferrooxidans was not inhibited by Al(III) ions. Directional regulation of the morphology, structure, and functional groups of schwertmannite was revealed in the controllable biosynthesis system. Schwertmannite transformed to nanoscale wire in the Fe/Al ratio 15:30 condition, but the phase and crystal structure remain unchanged. Al(III) modification effectively enhanced the content of hydroxyl groups and sulfate in schwertmannite and the adsorption reactivity. The highest adsorption capacity toward Cu(II)/Cr(VI) reached 53.82/87.26 in schwertmannite biosynthesized with Fe/Al ratio 15/30. In addition, biosynthetic schwertmannite possess deep removal capacity toward low concentration metals and selective adsorption capacity to complex metals. Heavy metals adsorbed on schwertmannite through cation exchange, surface complexation and ligand exchange. This research is of great significance for in deep understanding of material biosynthesis and the application of waste water treatment.

中文翻译:

纳米级施威曼石的可控生物合成及其在重金属有效去除中的应用

摘要 Schwertmannite 被广泛用于控制重金属的迁移率和生物利用度。然而,通过温和的方式可控地生物合成施维特曼石是具有挑战性的。本研究的目的是系统研究通过铝改性可控生物合成纳米级施威曼石的可行性,并评估重金属的去除效率和机理。结果表明,氧化亚铁酸硫杆菌的Fe(II)氧化和生物合成能力不受Al(III)离子的抑制。在可控的生物合成系统中揭示了施维特曼石的形态、结构和官能团的定向调控。Schwertmannite 在 Fe/Al 比为 15:30 的条件下转变为纳米线,但相和晶体结构保持不变。Al(III)改性有效提高了施维特曼石中羟基和硫酸根的含量和吸附反应活性。在 Fe/Al 比为 15/30 的生物合成施维特曼石中,对 Cu(II)/Cr(VI) 的最高吸附容量达到 53.82/87.26。此外,生物合成施威曼石具有对低浓度金属的深度去除能力和对复杂金属的选择性吸附能力。重金属通过阳离子交换、表面络合和配体交换吸附在施威曼石上。该研究对于深入了解物质生物合成及废水处理应用具有重要意义。26 以 Fe/Al 比为 15/30 生物合成的施维特曼石。此外,生物合成施威曼石具有对低浓度金属的深度去除能力和对复杂金属的选择性吸附能力。重金属通过阳离子交换、表面络合和配体交换吸附在施威曼石上。该研究对于深入了解物质生物合成及废水处理应用具有重要意义。26 以 Fe/Al 比为 15/30 生物合成的施维特曼石。此外,生物合成施威曼石具有对低浓度金属的深度去除能力和对复杂金属的选择性吸附能力。重金属通过阳离子交换、表面络合和配体交换吸附在施威曼石上。该研究对于深入了解物质生物合成及废水处理应用具有重要意义。
更新日期:2020-11-01
down
wechat
bug