当前位置: X-MOL 学术Rare Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure, mechanical properties and stretch formability of as-rolled Mg alloys with Zn and Er additions
Rare Metals ( IF 9.6 ) Pub Date : 2020-06-23 , DOI: 10.1007/s12598-020-01438-w
Ke Liu , Jing-Tao Liang , Wen-Bo Du , Shu-Bo Li , Zhao-Hui Wang , Zi-Jian Yu , Jin-Xue Liu

Abstract The magnesium alloy has a unique advantage in 3C fields due to its high specific strength and excellent electromagnetic shielding characteristic. However, it is difficult to deform homogeneously because of hexagonal close-packed structure. In the present work, the microstructure, mechanical properties and stretch formability of magnesium alloy sheets with different alloying elements were investigated. It was indicated that a trace addition of Zn or/and Er made a key role in modifying texture, activating shear bands formation and precipitating nanoscale second phases, respectively, which resulted in an obvious improvement in both stretch formability and mechanical properties. The results suggested that the Mg–0.5Zn–0.5Er alloy sheet exhibited higher tensile strength along the rolling direction, i.e., yield strength of 180 MPa and ultimate tensile strength of 201 MPa, accompanying with superior Erichsen value of 7.0 mm at room temperature. The good performances of the sheet were ascribed to weakening basal texture intensity, formation of shear bands and precipitation of nanoscale W-phase (Mg 3 Zn 3 Er 2 ). Graphic abstract The microstructure, mechanical properties and stretch formability of magnesium alloy sheets with different alloying elements were investigated in the present investigation. It was indicated that a trace addition of Zn or/and Er made a key role in modifying texture (Fig. 1), activating shear bands formation and precipitating nanoscale secondary phases (Fig. 2), respectively, which resulted in an obvious improvement in both stretch formability and mechanical properties (Fig. 3).

中文翻译:

添加Zn和Er的轧制态镁合金的显微组织、力学性能和拉伸成形性

摘要 镁合金由于具有较高的比强度和优良的电磁屏蔽特性,在3C领域具有独特的优势。然而,由于六边形密排结构,难以均匀变形。在目前的工作中,研究了具有不同合金元素的镁合金板的显微组织、机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改变织构、激活剪切带形成和沉淀纳米级第二相方面发挥了关键作用,从而显着改善了拉伸成型性和机械性能。结果表明,Mg-0.5Zn-0.5Er 合金板沿轧制方向表现出更高的抗拉强度,即,屈服强度为 180 MPa,极限抗拉强度为 201 MPa,同时在室温下具有 7.0 mm 的优异 Erichsen 值。板材的良好性能归因于基底织构强度减弱、剪切带的形成和纳米级W相(Mg 3 Zn 3 Er 2 )的析出。图形摘要 本研究研究了具有不同合金元素的镁合金板的显微组织、机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改变织构(图1)、激活剪切带形成和沉淀纳米级第二相(图2)方面发挥了关键作用,导致显着改善拉伸成型性和机械性能(图 3)。伴随着室温下 7.0 mm 的优异 Erichsen 值。板材的良好性能归因于基底织构强度减弱、剪切带的形成和纳米级W相(Mg 3 Zn 3 Er 2 )的析出。图形摘要 本研究研究了具有不同合金元素的镁合金板的显微组织、机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改变织构(图1)、激活剪切带形成和沉淀纳米级第二相(图2)方面发挥了关键作用,导致显着改善拉伸成型性和机械性能(图 3)。伴随着室温下 7.0 mm 的优异 Erichsen 值。板材的良好性能归因于基底织构强度减弱、剪切带的形成和纳米级W相(Mg 3 Zn 3 Er 2 )的析出。图形摘要 本研究研究了具有不同合金元素的镁合金板的显微组织、机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改变织构(图1)、激活剪切带形成和沉淀纳米级第二相(图2)方面发挥了关键作用,导致显着改善拉伸成型性和机械性能(图 3)。板材的良好性能归因于基底织构强度减弱、剪切带的形成和纳米级W相(Mg 3 Zn 3 Er 2 )的析出。图形摘要 本研究研究了具有不同合金元素的镁合金板的显微组织、机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改善织构(图1)、激活剪切带形成和沉淀纳米级第二相(图2)方面发挥了关键作用,这导致显着改善拉伸成型性和机械性能(图 3)。板材的良好性能归因于基底织构强度减弱、剪切带的形成和纳米级W相(Mg 3 Zn 3 Er 2 )的析出。图形摘要 本研究研究了具有不同合金元素的镁合金板的显微组织、机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改变织构(图1)、激活剪切带形成和沉淀纳米级第二相(图2)方面发挥了关键作用,导致显着改善拉伸成型性和机械性能(图 3)。在本研究中,研究了具有不同合金元素的镁合金板的机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改变织构(图1)、激活剪切带形成和沉淀纳米级第二相(图2)方面发挥了关键作用,导致显着改善拉伸成型性和机械性能(图 3)。在本研究中,研究了具有不同合金元素的镁合金板的机械性能和拉伸成形性。结果表明,微量Zn或/和Er的添加分别在改变织构(图1)、激活剪切带形成和沉淀纳米级第二相(图2)方面发挥了关键作用,导致显着改善拉伸成型性和机械性能(图 3)。
更新日期:2020-06-23
down
wechat
bug