当前位置: X-MOL 学术Environ. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toxicity of metal and metal oxide nanoparticles: a review
Environmental Chemistry Letters ( IF 15.0 ) Pub Date : 2020-06-23 , DOI: 10.1007/s10311-020-01033-6
Ayse Busra Sengul , Eylem Asmatulu

Nanotechnology has recently found applications in many fields such as consumer products, medicine and environment. Nanoparticles display unique properties and vary widely according to their dimensions, morphology, composition, agglomeration and uniformity states. Nanomaterials include carbon-based nanoparticles, metal-based nanoparticles, organic-based nanoparticles and composite-based nanoparticles. The increasing production and use of nanoparticles result in higher exposure to humans and the environment, thus raising issues of toxicity. Here we review the properties, applications and toxicity of metal and non-metal-based nanoparticles. Nanoparticles are likely to be accumulated in sensitive organs such as heart, liver, spleen, kidney and brain after inhalation, ingestion and skin contact. In vitro and in vivo studies indicate that exposure to nanoparticles could induce the production of reactive oxygen species (ROS), which is a predominant mechanism leading to toxicity. Excessive production of ROS causes oxidative stress, inflammation and subsequent damage to proteins, cell membranes and DNA. ROS production induced by nanoparticles is controlled by size, shape, surface, composition, solubility, aggregation and particle uptake. The toxicity of a metallic nanomaterial may differ depending on the oxidation state, ligands, solubility and morphology, and on environmental and health conditions.



中文翻译:

金属和金属氧化物纳米颗粒的毒性:综述

纳米技术最近在许多领域得到了应用,例如消费产品,医学和环境。纳米颗粒表现出独特的性质,并且根据其尺寸,形态,组成,团聚和均匀状态而变化很大。纳米材料包括基于碳的纳米颗粒,基于金属的纳米颗粒,基于有机的纳米颗粒和基于复合材料的纳米颗粒。纳米颗粒的生产和使用的增加导致人类和环境的暴露增加,从而引起毒性问题。在这里,我们综述了金属和非金属纳米粒子的特性,应用和毒性。吸入,食入和皮肤接触后,纳米颗粒可能会积聚在敏感器官(如心脏,肝脏,脾脏,肾脏和大脑)中。体外和体内研究表明,暴露于纳米粒子可能会诱导产生活性氧(ROS),这是导致毒性的主要机制。过量产生ROS会引起氧化应激,炎症以及随后对蛋白质,细胞膜和DNA的破坏。由纳米颗粒诱导的ROS产生受尺寸,形状,表面,组成,溶解度,聚集和颗粒吸收的控制。金属纳米材料的毒性可能取决于氧化态,配体,溶解性和形态以及环境和健康状况而有所不同。细胞膜和DNA。由纳米颗粒诱导的ROS产生受尺寸,形状,表面,组成,溶解度,聚集和颗粒吸收的控制。金属纳米材料的毒性可能取决于氧化态,配体,溶解性和形态以及环境和健康状况而有所不同。细胞膜和DNA。由纳米颗粒诱导的ROS产生受尺寸,形状,表面,组成,溶解度,聚集和颗粒吸收的控制。金属纳米材料的毒性可能取决于氧化态,配体,溶解性和形态以及环境和健康状况而有所不同。

更新日期:2020-06-23
down
wechat
bug