当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inlaid microfluidic optics: absorbance cells in clear devices applied to nitrite and phosphate detection
Journal of Micromechanics and Microengineering ( IF 2.4 ) Pub Date : 2020-06-22 , DOI: 10.1088/1361-6439/ab9202
Edward A Luy , Sean C Morgan , Joshua J Creelman , Benjamin J Murphy , Vincent J Sieben

A novel type of microfluidic absorbance cell is presented here that inlays black poly(methyl methacrylate) (PMMA) into a clear PMMA substrate to realize an isolated optical channel with microlitre volumes. Optical measurements are frequently performed on microfluidic devices, offering effective, quick, and robust chemical analysis capabilities on small amounts of sample. Many lab-on-chip systems utilize micrometer-sized channels to analyze liquid samples via light-absorbance measurements, but this requires sophisticated coordination of light through a small cross-section, often requiring collimating and beam-steering optics. Here, we detail the fabrication process to realize long path length absorbance cells based on a simple hybrid-material approach. A z-shape microchannel structure crosses a clear-black interface at both ends of the absorbance cell, thereby creating integral optical windows that permit light coupling into a microchannel completely embedded in black PMMA. Furthermore, we have integrated v-groove prisms on either side of the microfluidic channel. The prisms enabled seamless integration with printed circuit boards and permit the optical elements to be located off-chip without use of epoxies or adhesives. Three path lengths, 10.4, 25.4, and 50.4 mm, were created and used to characterize the novel cell design using typical colorimetric measurements for nitrite and phosphate. We compare the attenuation coefficient measured by our optical cells with the literature, showing excellent agreement across nutrient concentrations from 50 nM – 50 μM. The measurements were performed with well-known reagent-based methods, namely the Griess assay for nitrite and the molybdovanadophosphoric acid or "yellow method" for phosphate. The longest 50.4 mm path length cell had a limit-of-detection of 6 nM for nitrite and 40 nM for phosphate, using less than 12 μL of fluid. The inlaid fabrication method described permits robust and high-performance optical measurements with broad applicability for in situ marine sensors and for numerous lab-on-chip sensors based on colorimetric assays. One such application is shown whereby two inlaid absorbance cells are integrated with four microfluidic check valves to realize a complete lab-on-chip nitrite sensor.

中文翻译:

镶嵌微流体光学器件:透明装置中的吸光度池,适用于亚硝酸盐和磷酸盐检测

这里介绍了一种新型的微流体吸光度电池,它将黑色聚甲基丙烯酸甲酯 (PMMA) 镶嵌到透明的 PMMA 基板中,以实现具有微升体积的隔离光通道。光学测量经常在微流体设备上进行,可对少量样品提供有效、快速和稳健的化学分析能力。许多芯片实验室系统利用微米级通道通过吸光度测量来分析液体样品,但这需要通过小横截面进行复杂的光协调,通常需要准直和光束控制光学器件。在这里,我们详细介绍了基于简单混合材料方法实现长路径长度吸收池的制造过程。z 形微通道结构穿过吸光池两端的纯黑色界面,从而形成完整的光学窗口,允许光耦合到完全嵌入黑色 PMMA 的微通道中。此外,我们在微流体通道的两侧集成了 V 型槽棱镜。棱镜实现了与印刷电路板的无缝集成,并允许在不使用环氧树脂或粘合剂的情况下将光学元件置于芯片外。创建了三个路径长度,10.4、25.4 和 50.4 毫米,并使用亚硝酸盐和磷酸盐的典型比色测量来表征新颖的电池设计。我们将我们的光学电池测量的衰减系数与文献进行了比较,结果表明,在 50 nM – 50 μM 的营养浓度之间具有极好的一致性。测量是用众所周知的基于试剂的方法进行的,即亚硝酸盐和钼钒磷酸的 Griess 分析或磷酸盐的“黄色方法”。最长的 50.4 mm 光程比色皿的亚硝酸盐检测限为 6 nM,磷酸盐检测限为 40 nM,使用少于 12 μL 的液体。所描述的镶嵌制造方法允许进行稳健和高性能的光学测量,具有广泛的适用性,适用于原位海洋传感器和基于比色测定的众多芯片实验室传感器。展示了一个这样的应用,其中两个镶嵌的吸收池与四个微流体止回阀集成在一起,以实现完整的芯片实验室亚硝酸盐传感器。最长的 50.4 mm 光程比色皿的亚硝酸盐检测限为 6 nM,磷酸盐检测限为 40 nM,使用少于 12 μL 的液体。所描述的镶嵌制造方法允许进行稳健和高性能的光学测量,具有广泛的适用性,适用于原位海洋传感器和基于比色测定的众多芯片实验室传感器。展示了一个这样的应用,其中两个镶嵌的吸光度单元与四个微流体止回阀集成在一起,以实现完整的芯片实验室亚硝酸盐传感器。最长的 50.4 mm 光程比色皿的亚硝酸盐检测限为 6 nM,磷酸盐检测限为 40 nM,使用少于 12 μL 的液体。所描述的镶嵌制造方法允许进行稳健和高性能的光学测量,具有广泛的适用性,适用于原位海洋传感器和基于比色测定的众多芯片实验室传感器。展示了一个这样的应用,其中两个镶嵌的吸收池与四个微流体止回阀集成在一起,以实现完整的芯片实验室亚硝酸盐传感器。所描述的镶嵌制造方法允许进行稳健和高性能的光学测量,具有广泛的适用性,适用于原位海洋传感器和基于比色测定的众多芯片实验室传感器。展示了一个这样的应用,其中两个镶嵌的吸收池与四个微流体止回阀集成在一起,以实现完整的芯片实验室亚硝酸盐传感器。所描述的镶嵌制造方法允许进行稳健和高性能的光学测量,具有广泛的适用性,适用于原位海洋传感器和基于比色测定的众多芯片实验室传感器。展示了一个这样的应用,其中两个镶嵌的吸收池与四个微流体止回阀集成在一起,以实现完整的芯片实验室亚硝酸盐传感器。
更新日期:2020-06-22
down
wechat
bug