当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
System-Level Optimization of Hybrid Excitation Synchronous Machines for a Three-Wheel Electric Vehicle
IEEE Transactions on Transportation Electrification ( IF 5.444 ) Pub Date : 2020-05-13 , DOI: 10.1109/tte.2020.2992008
Ahmad Shah Mohammadi; João Pedro F. Trovão

In this article, a two-level methodology is proposed to optimize the design of a hybrid excitation synchronous machine (HESM) for a given electric vehicle (EV) over an arbitrary-selected driving cycle. We are looking at a huge analysis problem of finding an optimal hybridization ratio (HR) between the two excitation sources, namely, permanent magnet (PM) and wound excitation (WE). To find the optimal HR, the HR is scanned from 0 to 1 or from pure WE to pure PM excitation. For each HR, the motor is optimally designed at the component level, its cost is minimized, and its global efficiency over the selected driving cycle is calculated. Then, at the system level, the global efficiencies associated with each HR are compared in order to find the optimal HR. The complexity of the design optimization at the component level is addressed by nondominated sorting genetic algorithm II (NSGA-II). To make a compromise between the accuracy and speed of calculations, a nonlinear 3-D dynamic magnetic equivalent circuit (MEC) model is developed and evaluated by commercial finite element analysis (FEA) software. Following the proposed methodology and due to 300 h of computations with 48 CPU cores in parallel, the final HESM design can achieve up to 18.65% higher global efficiency than pure WE and 15.8% higher than pure PM excitation.
更新日期:2020-06-23

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug