当前位置: X-MOL 学术Shock Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Splitting Experimental Study on Sandstone at Actual High Temperatures under Different Loading Rates
Shock and Vibration ( IF 1.6 ) Pub Date : 2020-06-22 , DOI: 10.1155/2020/8867102
Qi Ping 1, 2, 3 , Mingjing Wu 2, 3 , Pu Yuan 1, 2, 3, 4 , Haipeng Su 2, 3 , Huan Zhang 2, 3
Affiliation  

The tensile failure of rocks is a common failure mode in rock engineering. Many studies have been conducted on the tensile strength and failure mode of rocks after high-temperature treatment under dynamic loading. However, research on the effects of high temperature on the dynamic splitting tensile characteristics of sandstone at actual high temperatures is lacking. To investigate the dynamic tensile characteristics of rocks at actual high temperatures, split Hopkinson pressure bar (SHPB) test apparatus and high-temperature environment box were used to perform dynamic splitting tensile tests under six striker velocities for sandstone specimens at 25°C–800°C. The dynamic splitting tensile strength, radial strain, average strain rate, and failure mode of sandstone under different test conditions were investigated. Test results revealed that the brittleness of sandstone specimens is enhanced at 200°C and 400°C, but slight ductility is observed at 600°C and 800°C. The strain rate effect of dynamic tensile strength is closely related to temperature. When the striker velocity exceeds 2.3 m/s, the dynamic radial strain first decreases and then increases with rising temperature. A quadratic polynomial relationship between the dynamic radial strain and temperature was observed. The temperature effect on the average strain rate is strong at low striker velocity and weak at high striker velocity. In the dynamic splitting tensile tests, high-temperature sandstone specimens are split into two semicylinders along the radial loading direction.

中文翻译:

不同加载率下实际高温下砂岩的动态劈裂实验研究

岩石的拉伸破坏是岩石工程中常见的破坏模式。对动载荷下高温处理后岩石的拉伸强度和破坏模式进行了许多研究。然而,缺乏对高温对实际高温下砂岩动态分裂拉伸特性影响的研究。为了研究岩石在实际高温下的动态拉伸特性,使用分裂霍普金森压力棒(SHPB)测试设备和高温环境箱对六种冲击器速度在25°C–800°的砂岩样品进行了动态分裂拉伸测试。 C。研究了不同试验条件下砂岩的动态劈裂抗拉强度,径向应变,平均应变率和破坏模式。测试结果表明,在200°C和400°C时,砂岩样品的脆性增强,但在600°C和800°C时观察到轻微的延展性。动态拉伸强度的应变率效应与温度密切相关。当撞针速度超过2.3 m / s时,动态径向应变首先降低,然后随温度升高而增加。观察到动态径向应变和温度之间的二次多项式关系。温度对平均应变率的影响在较低的撞针速度下较强,而在较高的撞针速度下较弱。在动态分裂拉伸试验中,高温砂岩试样沿径向载荷方向分裂成两个半圆柱。动态拉伸强度的应变率效应与温度密切相关。当撞针速度超过2.3 m / s时,动态径向应变首先降低,然后随温度升高而增加。观察到动态径向应变与温度之间的二次多项式关系。温度对平均应变率的影响在较低的撞针速度下较强,而在较高的撞针速度下较弱。在动态分裂拉伸试验中,高温砂岩试样沿径向载荷方向分裂成两个半圆柱。动态拉伸强度的应变率效应与温度密切相关。当撞针速度超过2.3 m / s时,动态径向应变首先降低,然后随温度升高而增加。观察到动态径向应变和温度之间的二次多项式关系。温度对平均应变率的影响在较低的撞针速度下较强,而在较高的撞针速度下较弱。在动态分裂拉伸试验中,高温砂岩试样沿径向载荷方向分裂成两个半圆柱。观察到动态径向应变与温度之间的二次多项式关系。温度对平均应变率的影响在较低的撞针速度下较强,而在较高的撞针速度下较弱。在动态分裂拉伸试验中,高温砂岩试样沿径向载荷方向分裂成两个半圆柱。观察到动态径向应变与温度之间的二次多项式关系。温度对平均应变率的影响在较低的撞针速度下较强,而在较高的撞针速度下较弱。在动态分裂拉伸试验中,高温砂岩试样沿径向载荷方向分裂成两个半圆柱。
更新日期:2020-06-23
down
wechat
bug