当前位置: X-MOL 学术Cereb. Cortex › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Brain Network Segregation and Glucose Energy Utilization: Relevance for Age-Related Differences in Cognitive Function.
Cerebral Cortex ( IF 2.9 ) Pub Date : 2020-06-22 , DOI: 10.1093/cercor/bhaa167
Peter Manza 1 , Corinde E Wiers 1 , Ehsan Shokri-Kojori 1 , Danielle Kroll 1 , Dana Feldman 1 , Melanie Schwandt 1 , Gene-Jack Wang 1 , Dardo Tomasi 1 , Nora D Volkow 1, 2
Affiliation  

The human brain is organized into segregated networks with strong within-network connections and relatively weaker between-network connections. This “small-world” organization may be essential for maintaining an energetically efficient system, crucial to the brain which consumes 20% of the body’s energy. Brain network segregation and glucose energy utilization both change throughout the lifespan. However, it remains unclear whether these processes interact to contribute to differences in cognitive performance with age. To address this, we examined fluorodeoxyglucose-positron emission tomography and resting-state functional magnetic resonance imaging from 88 participants aged 18–73 years old. Consistent with prior work, brain network segregation showed a negative association with age across both sensorimotor and association networks. However, relative glucose metabolism demonstrated an interaction with age, showing a negative slope in association networks but a positive slope in sensorimotor networks. Overall, brain networks with lower segregation showed significantly steeper age-related differences in glucose metabolism, compared with highly segregated networks. Sensorimotor network segregation mediated the association between age and poorer spatial cognition performance, and sensorimotor network metabolism mediated the association between age and slower response time. These data provide evidence that sensorimotor segregation and glucose metabolism underlie some age-related changes in cognition. Interventions that stimulate somatosensory networks could be important for treatment of age-related cognitive decline.

中文翻译:

脑网络分离和葡萄糖能量利用:与年龄相关的认知功能差异的相关性。

人脑被组织成具有强大网络内连接和相对较弱网络间连接的隔离网络。这种“小世界”组织对于维持一个能量高效的系统可能是必不可少的,这对消耗身体 20% 能量的大脑至关重要。脑网络分离和葡萄糖能量利用在整个生命周期中都会发生变化。然而,尚不清楚这些过程是否相互作用以导致认知表现随年龄的差异。为了解决这个问题,我们检查了 88 名年龄在 18-73 岁之间的参与者的氟脱氧葡萄糖 - 正电子发射断层扫描和静息状态功能磁共振成像。与之前的工作一致,大脑网络分离在感觉运动和关联网络中均与年龄呈负相关。然而,相对葡萄糖代谢显示出与年龄的相互作用,在关联网络中显示负斜率,但在感觉运动网络中显示正斜率。总体而言,与高度隔离的网络相比,具有较低隔离的大脑网络在葡萄糖代谢方面表现出显着更陡峭的年龄相关差异。感觉运动网络分离介导了年龄与较差空间认知能力之间的关联,而感觉运动网络代谢介导了年龄与较慢反应时间之间的关联。这些数据提供证据表明,感觉运动分离和葡萄糖代谢是一些与年龄相关的认知变化的基础。刺激体感网络的干预措施对于治疗与年龄相关的认知衰退很重要。在关联网络中显示负斜率,但在感觉运动网络中显示正斜率。总体而言,与高度隔离的网络相比,具有较低隔离的大脑网络在葡萄糖代谢方面表现出显着更陡峭的年龄相关差异。感觉运动网络分离介导了年龄与较差空间认知能力之间的关联,而感觉运动网络代谢介导了年龄与较慢反应时间之间的关联。这些数据提供证据表明,感觉运动分离和葡萄糖代谢是一些与年龄相关的认知变化的基础。刺激体感网络的干预措施对于治疗与年龄相关的认知衰退很重要。在关联网络中显示负斜率,但在感觉运动网络中显示正斜率。总体而言,与高度隔离的网络相比,具有较低隔离的大脑网络在葡萄糖代谢方面表现出显着更陡峭的年龄相关差异。感觉运动网络分离介导了年龄与较差空间认知能力之间的关联,而感觉运动网络代谢介导了年龄与较慢反应时间之间的关联。这些数据提供证据表明,感觉运动分离和葡萄糖代谢是一些与年龄相关的认知变化的基础。刺激体感网络的干预措施对于治疗与年龄相关的认知衰退很重要。与高度隔离的网络相比,具有较低隔离的大脑网络在葡萄糖代谢方面表现出显着更陡峭的年龄相关差异。感觉运动网络分离介导了年龄与较差空间认知能力之间的关联,而感觉运动网络代谢介导了年龄与较慢反应时间之间的关联。这些数据提供证据表明,感觉运动分离和葡萄糖代谢是一些与年龄相关的认知变化的基础。刺激体感网络的干预措施对于治疗与年龄相关的认知衰退很重要。与高度隔离的网络相比,具有较低隔离的大脑网络在葡萄糖代谢方面表现出显着更陡峭的年龄相关差异。感觉运动网络分离介导了年龄与较差空间认知能力之间的关联,而感觉运动网络代谢介导了年龄与较慢反应时间之间的关联。这些数据提供证据表明,感觉运动分离和葡萄糖代谢是一些与年龄相关的认知变化的基础。刺激体感网络的干预措施对于治疗与年龄相关的认知衰退很重要。和感觉运动网络代谢介导了年龄和较慢反应时间之间的关联。这些数据提供证据表明,感觉运动分离和葡萄糖代谢是一些与年龄相关的认知变化的基础。刺激体感网络的干预措施对于治疗与年龄相关的认知衰退很重要。和感觉运动网络代谢介导了年龄和较慢反应时间之间的关联。这些数据提供证据表明,感觉运动分离和葡萄糖代谢是一些与年龄相关的认知变化的基础。刺激体感网络的干预措施对于治疗与年龄相关的认知衰退很重要。
更新日期:2020-06-22
down
wechat
bug