当前位置: X-MOL 学术Phys. Rev. Accel. Beams › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultimate energy recovery from spent relativistic electron beam in energy recovery linear accelerators
Physical Review Accelerators and Beams ( IF 1.7 ) Pub Date : 
I. V. Konoplev, Ya. Shashkov, A Bulygin, M. A. Gusarova, F. Marhauser

Energy recovery linear accelerators (ERLs) are relying on the usage of single axis superconducting radio frequency (SRF) cavities to be efficient sources of relativistic electrons for high energy and nuclear physics and also considered for next-generation photon factories and radio-isotope production facilities. An ultimate energy recovery capability for the accelerator would be the ability of decreasing the energy of the beam before the beam dump to values less than that at the beam injection. This is especially important for high current accelerators as the beam injection energy could be as high as several MeVs. The operation and energy recovery in the linear accelerators are affected and can be terminated by electron beam quality degradations which always happens during the linac operation. This hinders the application of the ERLs in research and industry. One of the possible advantages of the dual axis asymmetric cavity, which has been recently suggested is its capability of using such a spent beam while avoiding excitation of parasitic modes and beam break up instability. In this work we are discussing and suggest how to observe an ultimate energy recovery of spent electron beam using such a dual-axis SRF cavity. To facilitate such energy recovery the use of fields of different amplitudes along the cavity axes is proposed. We demonstrate that differing fields can be realised in both axes by design, tuned separately thus enabling use of the degraded beam and broadening the ERLs applications. We demonstrate the design of such a cavity and discuss its properties. $^{a)\thinspace }$Corresponding author: {ivan.konoplev@physics.ox.ac.uk} {I. Introduction} The concept of an asymmetric, dual-axis SRF cavity (fig.1) has recently been proposed followed by preliminary optimization and studies of electromagnetic properties of the structure [1-4]. The dual-axis (also named twin-axis) cavities for particle acceleration were considered before [5,6], and the dual-axis, asymmetric cavity has recently been suggested in order to increase the BBU threshold current [7,8]. We note that in all the previous studies the design of the cavity has been done to assure the flat and identical operating field profiles along axis of the both sections. The JLab team in collaboration with the team from the Old Dominion University have built and successfully tested the first niobium, single-cell, twin-axis SRF cavity [9,10]. To improve the energy efficiency of the energy recovery linac the SRF cavities are used. The linacs are used for both research and industrial applications and after transportation and interactions with various targets, the electron beam quality degrades, i.e. the emittance increases in the transverse and longitudinal phase space. Even if there are no interception of the beam by different collimators and targets the degradation of the beam quality occurs due to coherent synchrotron radiation and it affects the efficiency of the energy recovery [11-21]. As a result ongoing state-of-the-art ERL design efforts are focused on the preservation of the beam quality [21-23]. One also notes that in spite the deceleration and electron beam energy reduction the electron beam is disposed in a dump (beam collector) carrying a significant amount of energy. This happens as the beam is typically injected into the ERL with an energy ranging from 1 MeV to 10 .

中文翻译:

能量回收线性加速器中用过的相对论电子束的最终能量回收

能量回收线性加速器(ERL)依靠单轴超导射频(SRF)腔体作为高能和核物理的相对论电子的有效来源,并且还考虑用于下一代光子工厂和放射性同位素生产设施。加速器的最终能量回收能力将是在将光束转储之前将光束的能量降低至小于光束注入时的能量的能力。这对于大电流加速器尤其重要,因为射束注入能量可能高达几个MeV。线性加速器的运行和能量回收会受到影响,并可能由于直线加速器运行期间经常发生的电子束质量下降而终止。这阻碍了ERL在研究和工业中的应用。最近已经提出的双轴不对称腔的可能优点之一是其使用这种用过的光束的能力,同时避免了激发寄生模式和光束破裂的不稳定性。在这项工作中,我们正在讨论并建议如何使用这种双轴SRF腔来观察废电子束的最终能量恢复。为了促进这种能量回收,提出了沿着腔轴使用不同幅度的场。我们证明,可以通过设计在两个轴上实现不同的场,分别进行调整,从而可以使用降级的光束并扩大ERL的应用范围。我们演示了这种腔的设计并讨论了其性能。最近已经提出的双轴不对称腔的可能优点之一是其使用这种用过的光束的能力,同时避免了激发寄生模式和光束破裂的不稳定性。在这项工作中,我们正在讨论并建议如何使用这种双轴SRF腔来观察废电子束的最终能量恢复。为了促进这种能量回收,提出了沿着腔轴使用不同幅度的场。我们证明,可以通过设计在两个轴上实现不同的场,分别进行调整,从而可以使用降级的光束并扩大ERL的应用范围。我们演示了这种腔的设计并讨论了其性能。最近已经提出的双轴不对称腔的可能优点之一是其使用这种用过的光束的能力,同时避免了激发寄生模式和光束破裂的不稳定性。在这项工作中,我们正在讨论并建议如何使用这种双轴SRF腔来观察废电子束的最终能量恢复。为了促进这种能量回收,提出了沿着腔轴使用不同幅度的场。我们证明,可以通过设计在两个轴上实现不同的场,分别进行调整,从而可以使用降级的光束并扩大ERL的应用范围。我们演示了这种腔的设计并讨论了其性能。最近已经提出的是其使用这样的用过的光束的能力,同时避免了寄生模式的激发和光束破裂的不稳定性。在这项工作中,我们正在讨论并建议如何使用这种双轴SRF腔来观察废电子束的最终能量恢复。为了促进这种能量回收,提出了沿着腔轴使用不同幅度的场。我们证明,可以通过设计在两个轴上实现不同的场,分别进行调整,从而可以使用降级的光束并扩大ERL的应用范围。我们演示了这种腔的设计并讨论了其性能。最近已经提出的是其使用这样的用过的光束的能力,同时避免了寄生模式的激发和光束破裂的不稳定性。在这项工作中,我们正在讨论并建议如何使用这种双轴SRF腔来观察废电子束的最终能量恢复。为了促进这种能量回收,提出了沿着腔轴使用不同幅度的场。我们证明,可以通过设计在两个轴上实现不同的场,分别进行调整,从而可以使用降级的光束并扩大ERL的应用范围。我们演示了这种腔的设计并讨论了其性能。为了促进这种能量回收,提出了沿着腔轴使用不同幅度的场。我们证明,可以通过设计在两个轴上实现不同的场,分别进行调整,从而可以使用降级的光束并扩大ERL的应用范围。我们演示了这种腔的设计并讨论了其性能。为了促进这种能量回收,提出了沿着腔轴使用不同幅度的场。我们证明,可以通过设计在两个轴上实现不同的场,分别进行调整,从而可以使用降级的光束并扩大ERL的应用范围。我们演示了这种腔的设计并讨论了其性能。$ ^ {a)\ thinspace} $通讯作者:{ivan.konoplev@physics.ox.ac.uk} 引言}最近提出了一种非对称双轴SRF腔的概念(图1),随后对其进行了初步优化和结构电磁性能的研究[1-4]。在[5,6]之前就已经考虑了用于粒子加速的双轴(也称为双轴)腔体,最近有人建议使用双轴非对称腔体来增加BBU阈值电流[7,8]。我们注意到,在所有先前的研究中,腔体的设计均已完成,以确保沿两个截面的轴均具有平坦且相同的工作场轮廓。JLab团队与Old Dominion大学的团队合作,已经构建并成功测试了第一个铌,单细胞,双轴SRF腔[9,10]。为了提高能量回收直线加速器的能量效率,使用了SRF腔。直线加速器用于研究和工业应用,并且在运输和与各种靶相互作用之后,电子束质量下降,即在横向和纵向相空间中的发射率增加。即使没有被不同的准直器和目标所拦截的光束,由于相干同步辐射的影响,光束质量也会下降,并且会影响能量回收的效率[11-21]。结果,正在进行的最新ERL设计工作集中在保持光束质量[21-23]上。一个人还注意到,尽管减速和电子束能量减少,但电子束仍放置在携带大量能量的转储装置(电子束收集器)中。
更新日期:2020-06-22
down
wechat
bug