当前位置: X-MOL 学术Combust. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pressure-induced Hydrodynamic Instability in Premixed Methane-Air Slot Flames
Combustion Science and Technology ( IF 1.9 ) Pub Date : 2020-06-22 , DOI: 10.1080/00102202.2020.1768081
Rachele Lamioni 1 , Pasquale Eduardo Lapenna 1 , Lukas Berger 2 , Konstantin Kleinheinz 2 , Antonio Attili 2 , Heinz Pitsch 2 , Francesco Creta 1
Affiliation  

The impact of pressure on the hydrodynamic instability mechanism is investigated in weakly turbulent, lean methane-air premixed slot flames by means of direct numerical simulations (DNS) employing multi-step chemistry and two different species diffusion models. A dedicated set of slot flames at four different pressures, featuring the same hydrodynamic lengthscale in units of flame thickness, is designed such that the Darrieus-Landau instability mechanism is either suppressed or present in the different flames. For the DNS design, a linear stability analysis is conducted to determine the flame stability characteristics and in particular the cutoff length scale of the Darrieus-Landau instability. As the pressure increases, the cutoff length scale decreases significantly in both dimensional and nondimensional units using the flame thickness as a reference. As a result, an increase in pressure promotes the onset and persistence of the Darrieus-Landau (or hydrodynamic) instability in the slot flame configuration considered. The impact of pressure is investigated in terms of flame morphology using well-established hydrodynamic instability markers. Then, the effect of pressure on the flame speed enhancement caused by the instability is assessed and quantified resorting to the global consumption speed concept. In particular, it is found that over the entire flame brush, the curvature skewness is more negative as pressure increases from 1 to 8 atm and the flame speed is increased by a factor that spans from 1.9 to 1.15 trough the flame brush.



中文翻译:

预混甲烷-空气槽火焰中压力引起的流体动力不稳定性

通过采用多步化学和两个不同物种扩散模型的直接数值模拟(DNS),在弱湍流,稀甲烷-空气预混槽火焰中研究了压力对流体动力学不稳定机制的影响。设计了一组专用的狭缝火焰,它们在四个不同的压力下具有相同的流体动力学长度尺度(以火焰厚度为单位),从而可以抑制或在不同的火焰中存在达里厄斯-朗道失稳机制。对于DNS设计,进行了线性稳定性分析,以确定火焰稳定性特征,尤其是Darrieus-Landau不稳定性的截止长度尺度。随着压力的增加 使用火焰厚度作为参考,截止长度尺度在尺寸和非尺寸单位中均显着降低。结果,压力的增加促进了所考虑的缝隙火焰构造中的Darrieus-Landau(或流体动力)不稳定性的开始和持续存在。使用成熟的水动力不稳定性标记物,根据火焰形态研究压力的影响。然后,根据全球消耗速度概念,评估和量化压力对由不稳定性引起的火焰速度增强的影响。尤其是,发现在整个火焰刷上,随着压力从1 atm增至8 atm,并且火焰速度增加了一个 压力的增加会促进所考虑的缝隙火焰构型中Darrieus-Landau(或流体动力)不稳定性的发生和持续存在。使用成熟的水动力不稳定性标记物,根据火焰形态研究压力的影响。然后,根据全球消耗速度概念,评估和量化压力对由不稳定性引起的火焰速度增强的影响。尤其是,发现在整个火焰刷上,随着压力从1 atm增至8 atm,并且火焰速度增加了一个 压力的增加会促进所考虑的缝隙火焰构型中Darrieus-Landau(或流体动力)不稳定性的发生和持续存在。使用成熟的水动力不稳定性标记物,根据火焰形态研究压力的影响。然后,根据全球消耗速度概念,评估和量化压力对由不稳定性引起的火焰速度增强的影响。尤其是,发现在整个火焰刷上,随着压力从1 atm增至8 atm,并且火焰速度增加了一个 使用成熟的水动力不稳定性标记物,根据火焰形态研究压力的影响。然后,根据全球消耗速度概念,评估和量化压力对由不稳定性引起的火焰速度增强的影响。尤其是,发现在整个火焰刷上,随着压力从1 atm增至8 atm,并且火焰速度增加了一个 使用成熟的水动力不稳定性标记物,根据火焰形态研究压力的影响。然后,根据全球消耗速度概念,评估和量化压力对由不稳定性引起的火焰速度增强的影响。特别是,发现在整个火焰刷上,随着压力从1 atm增至8 atm,并且火焰速度增加了一个 1.9 1.15 穿过火焰刷。

更新日期:2020-06-22
down
wechat
bug