当前位置: X-MOL 学术Combust. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect Chain Analysis of Supercritical Fuel Disintegration Processes Using an LES-based Entropy Generation Analysis
Combustion Science and Technology ( IF 1.7 ) Pub Date : 2020-06-22 , DOI: 10.1080/00102202.2020.1770239
Florian Ries 1 , Dennis Kütemeier 1 , Yongxiang Li 1 , Kaushal Nishad 1 , Amsini Sadiki 1
Affiliation  

In this work, a large eddy simulation (LES) technique combined with entropy generation analysis (EGA) is employed in order to investigate the complex physics of fuel injection under supercritical conditions. In particular, physical processes that are relevant for the fuel breakup and mixing are identified and their effects on the overall disintegration process are quantified. Thereby, it turned out that (1) a chain of four consecutive physical processes (shearing, separation, pseudo-boiling, and turbulent mixing) drive the overall jet disintegration, (2) entropy is primarily generated due to thermal energy conversion processes including pseudo-boiling rather than hydrodynamics, and (3) LES technique combined with EGA proved to be a promising approach for effect chain analyses, not only for simple flows, but also for those with complex thermodynamic properties like supercritical fuel injection. Based on these findings, a physical model of the disintegration process of a cryogenic jet flow injected at supercritical conditions is proposed.



中文翻译:

基于LES的熵产生分析的超临界燃料分解过程影响链分析

在这项工作中,采用大涡模拟(LES)技术与熵产生分析(EGA)相结合,以研究超临界条件下燃油喷射的复杂物理原理。特别是,确定了与燃料分解和混合相关的物理过程,并量化了它们对整体分解过程的影响。因此,事实证明:(1)四个连续的物理过程(剪切,分离,伪沸腾和湍流混合)的链驱动总体射流崩解;(2)熵主要是由于包括拟态在内的热能转化过程而产生的(3)LES技术与EGA相结合是一种效果链分析的有前途的方法,不仅适用于简单流动,也适用于那些具有复杂热力学特性的车辆,例如超临界燃料喷射。基于这些发现,提出了在超临界条件下注入的低温射流的崩解过程的物理模型。

更新日期:2020-06-22
down
wechat
bug