当前位置: X-MOL 学术Methods Ecol. Evol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluorescence‐based detection of field targets using an autonomous unmanned aerial vehicle system
Methods in Ecology and Evolution ( IF 6.3 ) Pub Date : 2020-06-21 , DOI: 10.1111/2041-210x.13402
Thomas G. Kaye 1, 2 , Michael Pittman 2, 3
Affiliation  

  1. Here we describe a proof‐of‐concept autonomous unmanned aerial vehicle (UAV) system that utilizes the fluorescence characteristics unique to different materials to scan and acquire targets in the field that includes fossils, rocks and minerals, organisms and archaeological artefacts. This is possible because these targets are often highly fluorescent against lower fluorescence backgrounds and may exhibit different colours. To detect these targets from a moving UAV, we utilize laser‐stimulated fluorescence. This involves an intense laser beam that—unlike regular UV light—can project greater distances and generate sufficient fluorescence for targets to be detected on the UAV camera many metres above the ground.
  2. The system involves a lightweight UAV programmed to fly a waypoint pattern autonomously at night over the area of interest. LIDAR maintains its height above the terrain. A near‐UV laser is projected across the ground as a horizontal line directly below the UAV. Co‐mounted with the laser is a small highly sensitive video camera stabilized on a motion‐controlled gimbal that records the laser line during the flight. An intermittent, powerful white light strobe flashes during the flight to record the UAV's ground position in the scanned area. The UAV returns with the laser video at the end of each autonomous mission. This video is post‐processed, extracting the laser line data into a long continuous scan image showing the fluorescing ground targets.
  3. Initial analysis determines what colour the targets fluoresce so that a specific colour range can be extracted from the image to identify the locations of the detected targets. The white light strobe images are then used to quickly follow‐up on the detections.
  4. This system holds the promise of becoming the lowest ‘ground truth’ layer in the mix of high‐altitude map data produced by satellite‐ and airplane‐based Geographic Information Systems. With centimetre resolution and the geochemical differences shown via fluorescence, this system will increase the scale and efficiency of data collection involving fossils, rocks and minerals including mineable materials, fluorescent organisms including biogenic mineral producers like shellfish as well as archaeological artefacts. Thus, the fields of evolution, ecology, Earth and planetary science, archaeology and other subjects involving fluorescent targets would all benefit from this new system.


中文翻译:

使用自主无人机系统基于荧光的野外目标检测

  1. 在这里,我们描述了一种概念验证的自动驾驶无人机(UAV)系统,该系统利用不同材料特有的荧光特性来扫描和获取该领域中的目标,包括化石,岩石和矿物,生物和考古文物。这是可能的,因为这些靶标通常在较低的荧光背景下具有高荧光强度,并且可能显示不同的颜色。为了从移动的无人机中检测这些目标,我们利用激光激发的荧光。这涉及到强烈的激光束,与常规的紫外线不同,该激光束可以投射更远的距离并产生足够的荧光,以便在离地面数米的无人机摄像机上检测到目标。
  2. 该系统包括轻型无人机,该无人机经过编程,可在夜间自动在目标区域上空飞行航路点模式。LIDAR保持其高于地形的高度。近紫外激光作为水平线投射在地面上,位于无人机的正下方。与激光器共同安装的是一个小型的高灵敏度摄像机,该摄像机稳定在运动控制的万向架上,可记录飞行过程中的激光线。飞行过程中,间歇性强力白光闪光灯闪烁,以记录无人机在扫描区域中的地面位置。每次自动任务结束时,无人机都会随激光视频一起返回。该视频经过了后处理,将激光线数据提取到一个长的连续扫描图像中,该图像显示了发荧光的地面目标。
  3. 初步分析可以确定目标发出荧光的颜色,以便可以从图像中提取特定的颜色范围,以识别检测到的目标的位置。然后使用白光频闪图像快速跟踪检测结果。
  4. 该系统有望在基于卫星和飞机的地理信息系统生成的高海拔地图数据中成为最低的“地面真相”层。借助厘米分辨率和通过荧光显示的地球化学差异,该系统将提高数据采集的规模和效率,涉及化石,岩石和矿物(包括可开采材料),荧光生物(包括诸如贝壳类的生物成矿物质生产商)以及考古文物。因此,进化,生态学,地球和行星科学,考古学以及其他涉及荧光靶标的学科都将从这个新系统中受益。
更新日期:2020-06-21
down
wechat
bug