当前位置: X-MOL 学术Adv. Eng. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication and Characterization of Fe16N2 Micro‐Flake Powders and Their Extrusion‐Based 3D Printing into Permanent Magnet Form
Advanced Engineering Materials ( IF 3.6 ) Pub Date : 2020-06-22 , DOI: 10.1002/adem.202000311
Onur Zirhli 1, 2 , Nilay Gunduz Akdogan 3 , Yazan N. Odeh 1 , I. Burc Misirlioglu 2, 4 , Eamon Devlin 5 , Ozan Akdogan 1
Affiliation  

Fe16N2 is a compound with giant saturation magnetization approaching or exceeding that of rare‐earth‐based permanent magnets. The abundance of its elements and low‐cost synthesis of this compound has made it highly attractive to replace rare‐earth‐based permanent magnets that are becoming ever more expensive to utilize in applications. Herein, its synthesis from Fe flakes by surfactant‐assisted high energy ball milling is demonstrated. The synthesized Fe flakes are then reduced under forming gas (Ar/H2), followed by nitridation at low temperatures under ammonia (NH3) gas. The formation of Fe16N2 phase exceeding 50% by volumetric fraction is observed and confirmed by X‐ray diffraction and Mössbauer analysis. Following the Fe16N2 flake synthesis, extrusion‐based 3D printing is used to check the feasibility of incorporation of the flakes into functional polymer matrix composites. For this purpose, an ink of intermixed synthesized powder with photoresist SU8 is used. Using the prescribed method, a prototype Fe16N2 permanent magnet composite is successfully produced using an additive manufacturing approach. Such efficient production of Fe16N2 powders via routes already applicable to magnet production and the consolidation of the powders with 3D printing are expected to open up new possibilities for next‐generation permanent magnet applications.

中文翻译:

Fe16N2鳞片状粉末的制备,表征及其基于永磁体的3D挤出成型

Fe 16 N 2是一种巨大的饱和磁化强度接近或超过稀土基永磁体的化合物。该化合物的丰富元素和低成本的合成使其在替代稀土永磁材料方面具有很高的吸引力,而稀土永磁材料在应用中的使用越来越昂贵。在此,通过表面活性剂辅助高能球磨从铁片中合成了铁。然后将合成的铁薄片在形成气体(Ar / H 2)下还原,然后在低温下在氨(NH 3)气体下进行氮化。Fe 16 N 2的形成通过X射线衍射和Mössbauer分析观察到并确认体积分数超过50%的液相。在Fe 16 N 2薄片合成之后,使用基于挤出的3D打印来检查将薄片掺入功能性聚合物基体复合材料的可行性。为此目的,使用合成粉末与光致抗蚀剂SU8混合的墨水。使用规定的方法,使用增材制造方法成功生产了原型Fe 16 N 2永磁复合材料。Fe 16 N 2的这种高效生产 通过已经适用于磁体生产的途径生产粉末,以及通过3D打印将粉末合并在一起,有望为下一代永磁应用开辟新的可能性。
更新日期:2020-06-22
down
wechat
bug