当前位置: X-MOL 学术Thermochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetic parameter estimation and simulation of pultrusion process of an epoxy-glass fiber system
Thermochimica Acta ( IF 3.1 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.tca.2020.178636
Rita de Cassia Costa Dias , Michelle Leali Costa , Lizandro de Sousa Santos , Ralf Schledjewski

Abstract Pultrusion is a continuous process for manufacturing polymer composite with uniform cross-sectional profiles. In this process the pulling speed and die temperature are the main process variables that can be used to improve the chemical and mechanical properties of the pultruded polymer composite. A critical processing step in reactive polymer composites that involves thermoset resins is the curing reaction that starts from monomers/oligomers, which forms a three-dimensional cross-linked network. While empirical kinetic models for the prediction of the degree of cure are easy to handle, they are limited in terms of providing a complete understanding of the system, due to the absence of knowledge regarding the full kinetic of the functional groups. In this regard, the use of phenomenological models, based on material balances of functional groups involved in the curing reaction, is a noteworthy strategy. In this work two kinetic models were tested to simulate the pultrusion process: (i) empirical model and (ii) phenomenological model. Diffusional limitations on the cure kinetics were coupled into both models. The kinetic parameters of both models were estimated from differential scanning calorimetry (DSC) experiments of an epoxy resin derived from an unmodified liquid diglycidyl ether of Bisphenol A (DGEBA resin) in a mixture with an Anhydride Curing Agent and an Accelerator like DMP-30 (2,4,6-tris(dimethylaminomethyl) phenol). The results revealed that the kinetic models could be reasonably adjusted to the experimental curing behavior, allowing to obtain accurate values for different curing rates. The kinetic models were then implemented into the pultrusion model, by the use of the FE software, ANSYS-17.2. According to the results of ultruded thermal and curing profiles of pultruded parts, it is shown that the kinetic models are suitable for predicting the thermal and curing behavior of the pultrusion process.

中文翻译:

环氧-玻璃纤维系统拉挤过程动力学参数估计与模拟

摘要 拉挤成型是制造具有均匀截面轮廓的聚合物复合材料的连续工艺。在此过程中,拉拔速度和模具温度是可用于改善拉挤聚合物复合材料的化学和机械性能的主要工艺变量。涉及热固性树脂的反应性聚合物复合材料的关键加工步骤是从单体/低聚物开始的固化反应,该反应形成三维交联网络。虽然用于预测固化程度的经验动力学模型易于处理,但由于缺乏有关官能团完整动力学的知识,因此它们在提供对系统的完整理解方面受到限制。在这方面,使用现象学模型,基于参与固化反应的官能团的物质平衡,是一个值得注意的策略。在这项工作中,测试了两个动力学模型来模拟拉挤过程:(i)经验模型和(ii)现象学模型。固化动力学的扩散限制被耦合到两种模型中。两种模型的动力学参数均通过差示扫描量热法 (DSC) 实验估计,该环氧树脂源自未改性的双酚 A 液体二缩水甘油醚(DGEBA 树脂)与酸酐固化剂和促进剂(如 DMP-30)的混合物( 2,4,6-三(二甲氨基甲基)苯酚)。结果表明,动力学模型可以根据实验固化行为进行合理调整,从而获得不同固化速率的准确值。然后通过使用有限元软件 ANSYS-17.2 将动力学模型实施到拉挤成型模型中。根据拉挤部件的拉挤热和固化曲线的结果,表明动力学模型适用于预测拉挤过程的热和固化行为。
更新日期:2020-08-01
down
wechat
bug